Parallel
Processing &
Applied
Mathematics
Ostrava, Czech Republic, September 8-11, 2024

POLI
NKA

Czestochowa
University
of Technology
VSB TECHNICAL
UNIVERSITY
OF OSTRAVA

Strengthening AI to Enable Scientific Discovery

Amarda Shehu, PhD
Inaugural Vice President and Chief AI Officer,
Associate Dean for AI Innovation, College of Engineering and Computing
Professor of Computer Science

[PPAM] [Sep 9th 2024]

10K Mile-up View: *4AI and AI4*

Foundations of AI and Machine Learning
Theory → Algorithms

Application for Scientific Discovery in Physical, Biological, and Sociotechnical Systems

Jeffress Trust Awards Program

Health Resources in Action

Advancing Public Health and Medical Research

Commonwealth of Virginia Alzheimer's & Related Diseases Research Award Fund

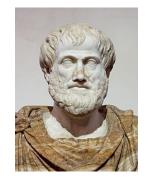
Function → Form → Function-encoding Representation of Form

"The purpose [..] is to discuss a possible mechanism by which [..] genes [..] <u>may determine the anatomical structure</u> of the resulting organism. The theory [..] suggests that [..] <u>well-known physical laws are sufficient</u> to account for many of the facts." Turing, AM. (1952) Chemical basis of morphogenesis. Phil Trans Royal Soc London. Series B, Biol Sciences 237(641):37-72.

How does the form of matter determine function?

Sir Alan Turing
1912-1954
Principle

Societal & Health Problems → Fundamental
Scientific Challenges → Fundamental AI Advances



Roman copy in marble of Greek bronze bust of Aristotle by Lysippos, c. 330 BC

"It is the mark of an instructed mind to rest satisfied with the degree of precision which the nature of the subjects permits and not seek an exactness where only an approximation of the truth is possible." Aristotle 319 BC

Build or Learn (ith approximative)
Function-encoding Representation of Form

Computational Focus

Representation Learning in my Lab over the Years

No to very little data – explicit knowledge 2002-2016

Classic AI: stochastic search- optimization (geometry, kinematics, inverse kinematics, motion planning)
-- molecular structural biology

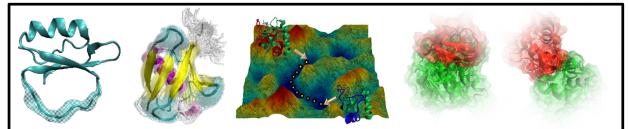
Some data –explicit and tacit knowledge 2010-

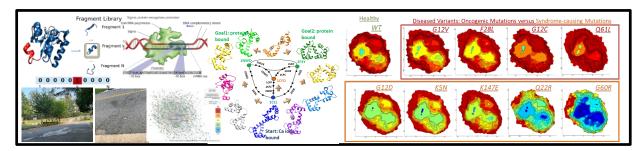
Hybrid Models (data-driven AI, knowledge-guided shallow ML, shallow ML + AI)

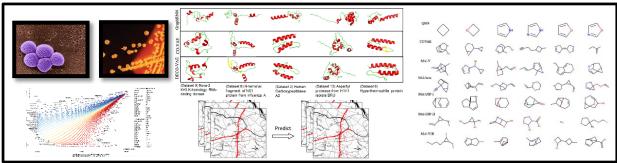
--- **sequence/structural biology**, social media user modeling, industrial monitoring, urban planning

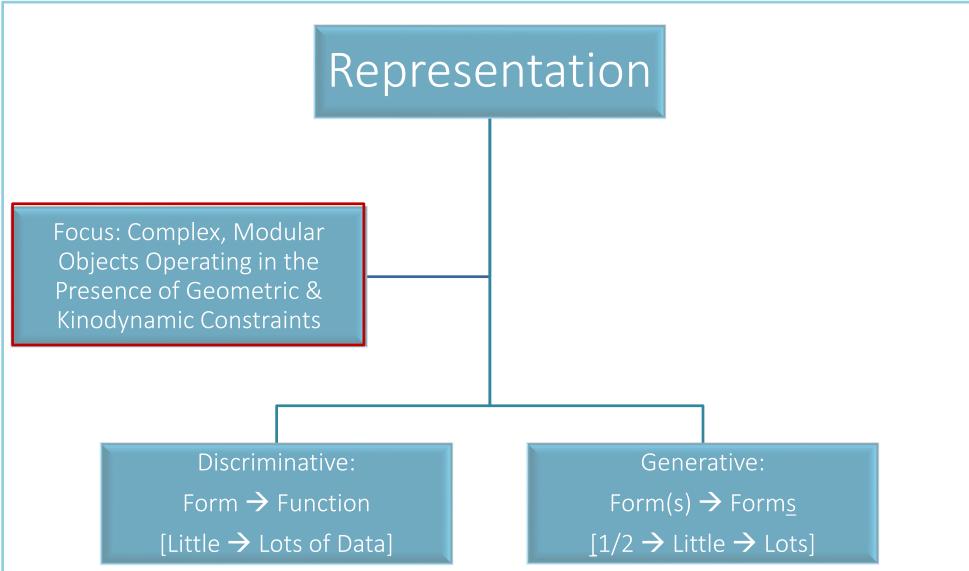
Lots of data – AI romance w/ tacit knowledge

Deep Learning, NLP, Deep generative models
-- sequence/structural biology, mental health,
traffic forecasting, AI for Science, AI For Policy









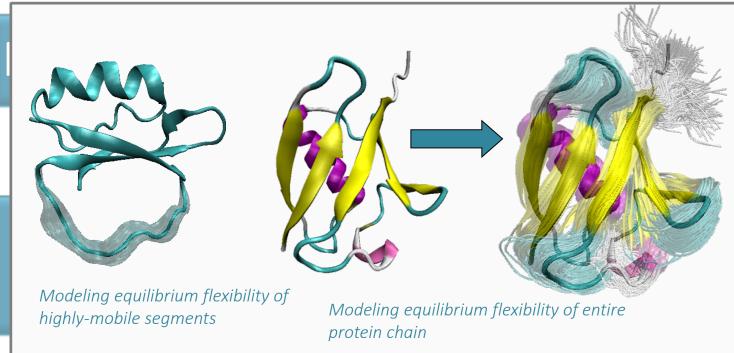
Generative AI before NNs, DL Good old-fashioned configuration sampling, searching, planning

> Focus: Complex, Modular Objects Operating in the Presence of Geometric & Kinodynamic Constraints

> > Discriminativ

Form → Funct

[Little > Lots of

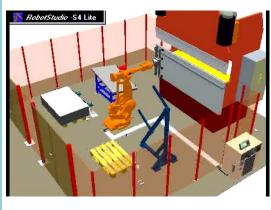


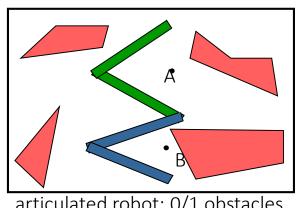
Goal: Partial or full characterization of protein flexibility by combining fast molecular kinematics (inspired from robotics/geometry of articulated objects) with physics-based treatments (molecular mechanics).

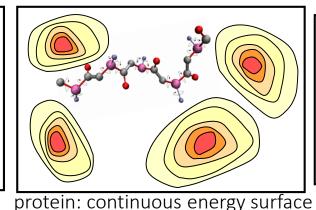
Think deeply about coupled and uncoupled degrees of freedom to control dimensionality of the search space

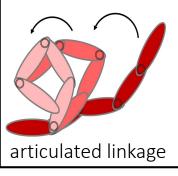
Algorithmica; Proteins: Structure & Function; Protein Science; Biophysics J; ...

ROBOT → MACROMOLECULAR MOTION PLANNING



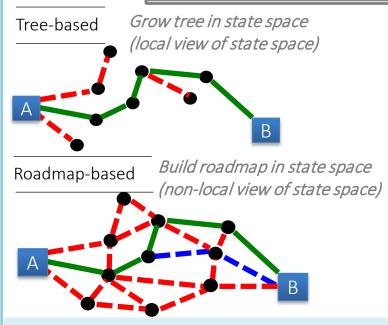


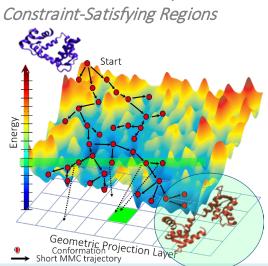




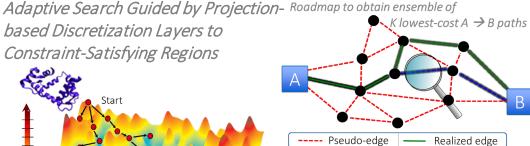
articulated robot: 0/1 obstacles

protein: continuous energy surface

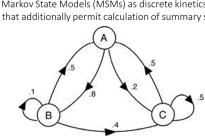




based Discretization Layers to



Markov State Models (MSMs) as discrete kinetics models that additionally permit calculation of summary statistics



Connect summary statistics with wet-lab kinetic

measurements

How not to get

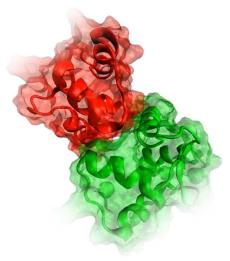
lost in hundred-

dof space and

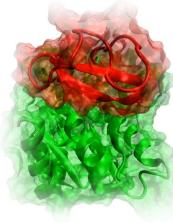
apportion compute

Feasible (Robotics-inspired) Models of Dynamics via Adaptive Search

Calmodulin

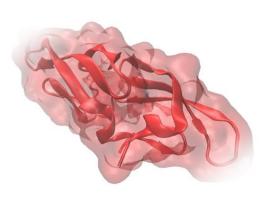


Adenylate Kinase

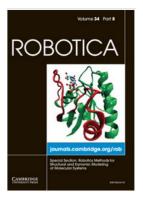


> 13Å open-closed motions accommodating different binding partners regulating cascade of signals in living cell

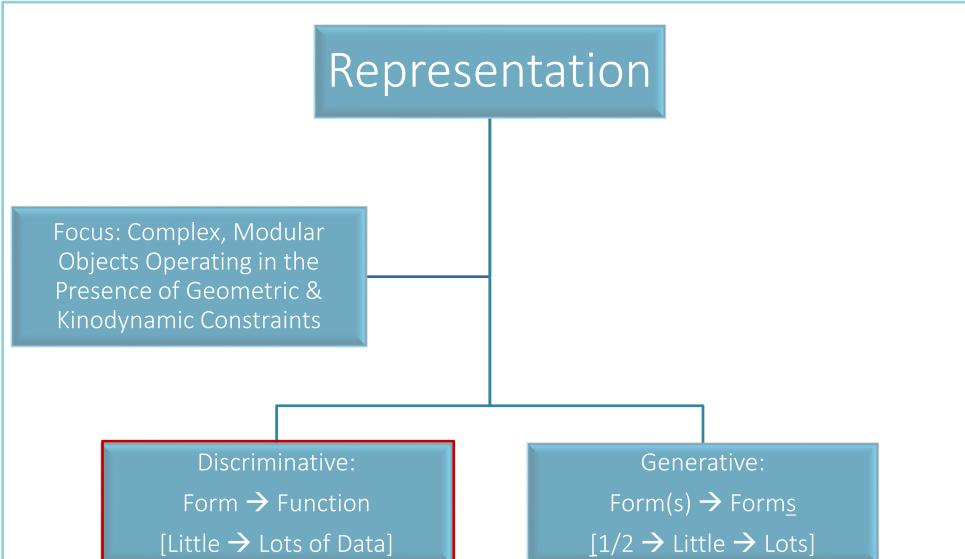
Cyanovirin-N



> 16Å motion potent virucidal protein against HIV-I and influenza



Robotica
IEEE/ACM Trans Comput Biol
BMC Struct Biol
Proteome Sci
J Artif Intel Res
Int J Robot Res
Robotics Sci & Sys
PLoS Comput Biol
J Comput Biol



Strengthening AI: Discriminative, Little Data Setting

Key Question: How does our understanding of the domain, of the problem, of the underlying process inform representation learning?

Function-encoding representations of form

In Discriminative Setting: Guide Feature Engineering with Prior Knowledge

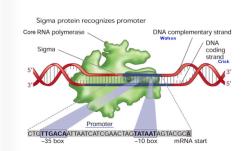
Strengthening AI: Discriminative, Little Data Setting

Key Question: How does our understanding of the domain, of the problem, of the underlying process inform representation learning?

Function-encoding representations of form

In Discriminative Setting: Guide Feature Engineering with Prior Knowledge

Prediction Task: Sequence → Function
Representation Q: What Constraints does Function Impose on Sequence?



Key insight: encode implicit constraints in linear representation

- Non-local/distal constraints
- Capture them as features (compositional, positional, correlational, ...)
- Explicit, interpretable answer to how sequence encodes function

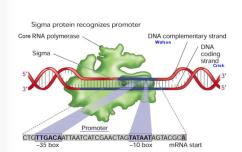
Strengthening AI: Discriminative, Little Data Setting

Key Question: How does our understanding of the domain, of the problem, of the underlying process inform representation learning?

Function-encoding representations of form

In Discriminative Setting: Guide Feature Engineering with Prior Knowledge

Prediction Task: Sequence → Function
Representation Q: What Constraints does Function Impose on Sequence?



Key insight: encode implicit constraints in linear representation

- Non-local/distal constraints
- Capture them as features (compositional, positional, correlational, ...)
- Explicit, interpretable answer to how sequence encodes function

Example of a biological signature: Motif 'TTGACA' at some position i AND 'TATAAT' at some position j

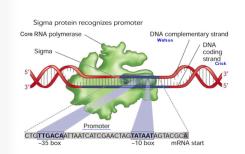
Strengthening AI: Discriminative, Little Data Setting

Key Question: How does our understanding of the domain, of the problem, of the underlying process inform representation learning?

Function-encoding representations of form

In Discriminative Setting: Guide Feature Engineering with Prior Knowledge

Prediction Task: Sequence → Function
Representation Q: What Constraints does Function Impose on Sequence?



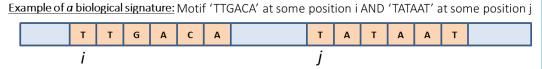
Key insight: encode implicit constraints in linear representation

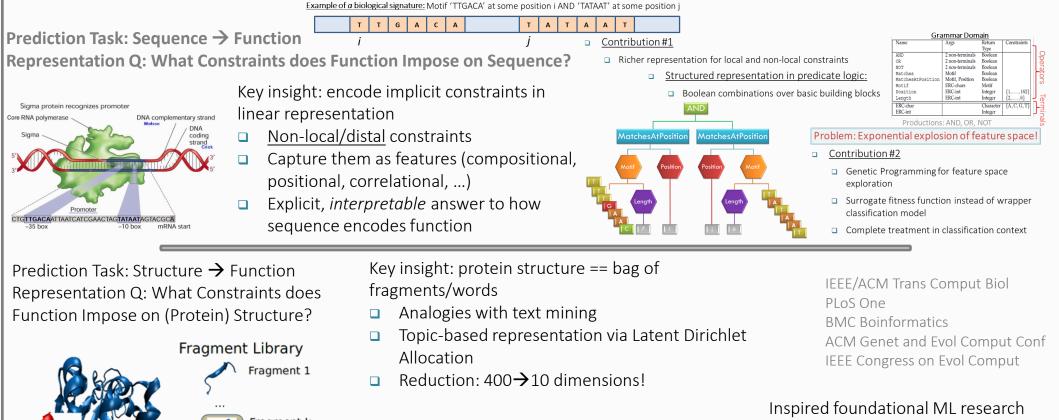
- Non-local/distal constraints
- Capture them as features (compositional, positional, correlational, ...)
- Explicit, interpretable answer to how sequence encodes function



classification model

Complete treatment in classification context





Fragment k Fragment N

Prediction of superfamily membership								
	Fragbag Representation			Topic-Based Representation				
SCOP Superfamily	Accuracy (%)	TPR	FPR	AUC	Accuracy (%)	TPR	FPR	AUC
P-Loop Binding	96.4	0.98	0.05	0.95	84.3	0.97	0.29	0.84
Immunoglobin	100.0	1.00	0.00	1.000	99.9	0.99	0.0	1.0
NAD(P)-binding Rossman Fold	98.7	0.99	0.02	0.99	90.9	0.94	0.13	0.91
Thioredoxin-like	98.8	0.98	0.01	0.99	80.2	0.92	0.32	0.80
alpha/beta Hydrolases	99.1	1.00	0.02	0.99	92.7	0.95	0.10	0.93
EF-hand	100.0	1.00	0.00	1.000	98.8	0.99	0.01	0.99
Winged helix DNA-binding	98.7	0.98	0.01	0.99	84.4	0.79	0.11	0.84

GP-based exploration over (structured representations of) kernels

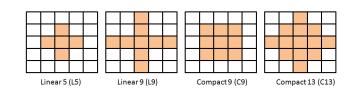
Feature and Kernel Fvolution for Improved Classification via SVM

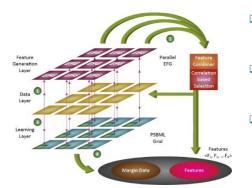
Other contributions: detection of remote homologs; organization of protein structure preserving function co-localization, ...

Cross-fertilization of sub-domains: ML + Evolutionary Computation

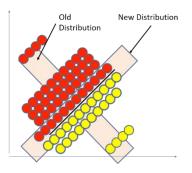
Scalable Learning on Big Data via A Meta-Learning Paradigm

- Parallel Spatial Boosting Machine Learner (PSBML)
- Distribute training data and evolve toward instances that determine decision boundary





- At each topological grid node, a local algorithm is run that has only local interactions with immediate neighbors
- Each node/classifier trains on own data but tests on own data and training data of neighbors
- Local set of training instances updated via stochastic sampling over confidence-weighted instances

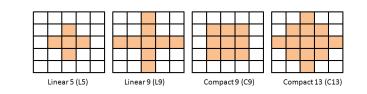


Boosting-like behavior: Hard instances migrate over nodes

- The more difficult an instance is, the more likely it will be selected for sampling \Rightarrow local training sets evolve $cs_i = \min_{n \in N_i} c_{ni}$ $cs_i^{\text{norm}} = \frac{cs_i cs_{\min}}{cs_{\max} cs_{\min}}$ $w_i = 1 cs_i^{\text{norm}}$
- □ Theoretical results: PSBML converges to a data distribution whose modes are centered around the margin (hardest points) behavior modeled via Gaussian mixtures and mean shift

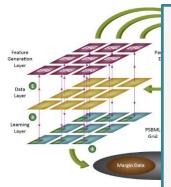
Scalable Learning on Big Data via A Meta-Learning Paradigm

- Parallel Spatial Boosting Machine Learner (PSBML)
- Distribute training data and evolve toward instances that determine decision boundary
 Intl Conf on Parallel Problem Solving from nature (PPSN)



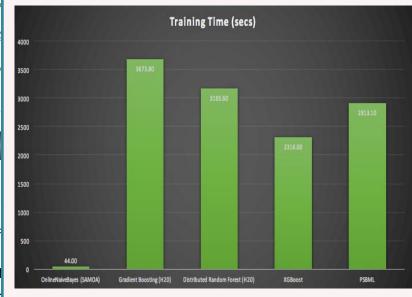
Old

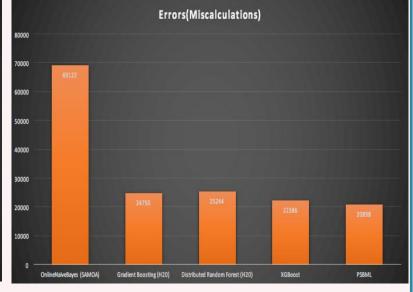
New Distribution

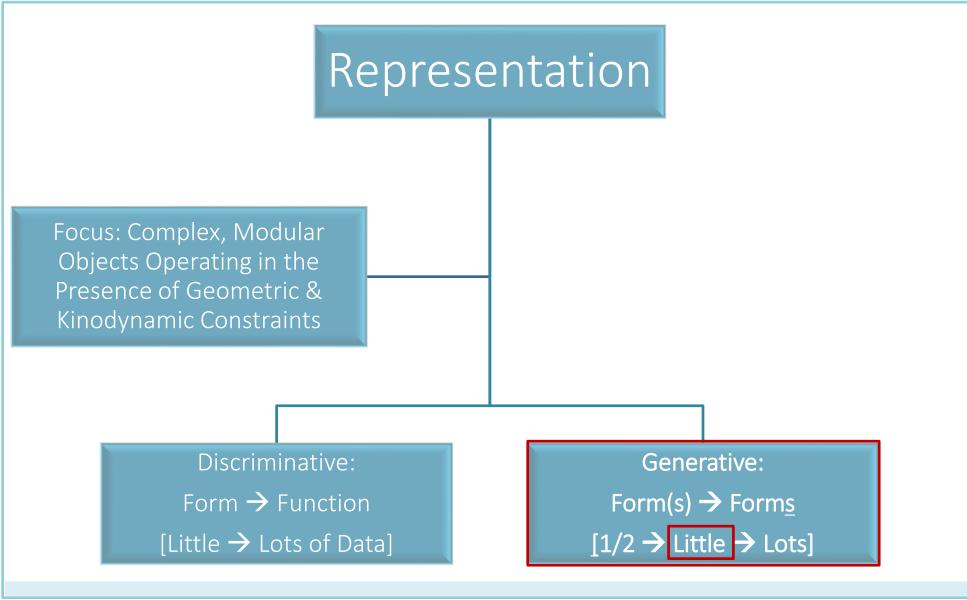


The more di evolve cs_i :

Theoretical margin (hard

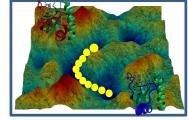






The <u>energy landscape</u> underscores the inherent nature of biomolecules as dynamic systems interconverting between structures with varying energies

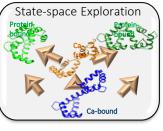
H-Ras switching between its GTP-bound (red) and GDP-bound (blue) structures



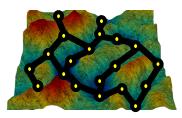
Schematic illustration of H-Ras structures on energy landscape

The <u>energy landscape</u> underscores the inherent nature of biomolecules as dynamic systems interconverting between structures with varying energies

H-Ras switching between its GTP-bound (red) and GDP-bound (blue) structures



Schematic illustration of H-Ras structures on energy landscape



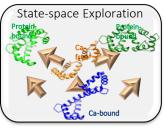
Thousands of dimensions/dofs — can leverage little $\mathsf{data}^\mathsf{\tiny{NNI-NORM}}$ (deposited structures)

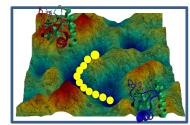
Theoretical basis? Conformational selection/population shift: Experimentally-determined structures of bound, unbound, WT and diseased variants are *known points* in the state space!

→ Leverage them to define and initialize variable space

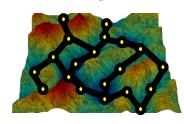
The <u>energy landscape</u> underscores the inherent nature of biomolecules as dynamic systems interconverting between structures with varying energies

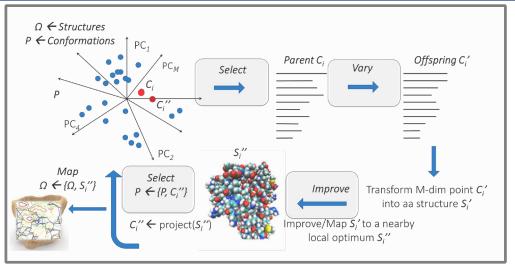
H-Ras switching between its GTP-bound (red) and GDP-bound (blue) structures





Schematic illustration of H-Ras structures on energy landscape





Thousands of dimensions/dofs – can leverage little data (deposited structures)

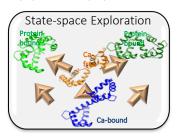
Theoretical basis? Conformational selection/population shift: Experimentally-determined structures of bound, unbound,

WT and diseased variants are *known points* in the state space!

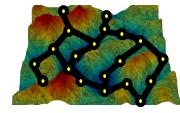
→ Leverage them to <u>define</u> and <u>initialize</u> variable space

The <u>energy landscape</u> underscores the inherent nature of biomolecules as dynamic systems interconverting between structures with varying energies

H-Ras switching between its GTP-bound (red) and GDP-bound (blue) structures



Schematic illustration of H-Ras structures on energy landscape

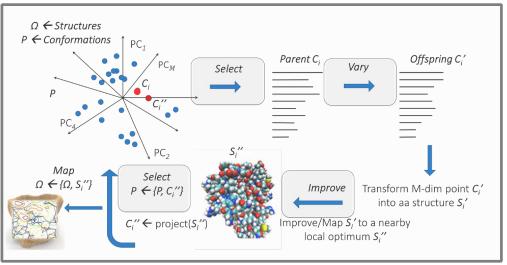


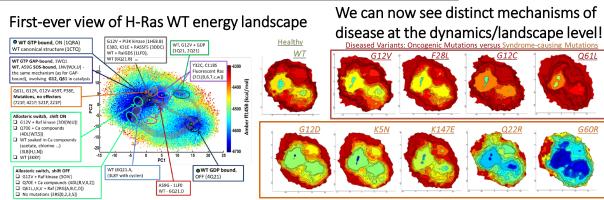
Thousands of dimensions/dofs – can leverage little data (deposited structures)

Theoretical basis? Conformational selection/population shift:

Experimentally-determined structures of bound, unbound, WT and diseased variants are *known points* in the state space!

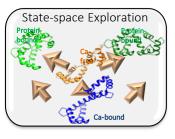
→ Leverage them to define and initialize variable space

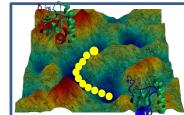




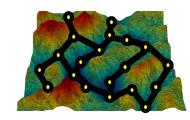
The <u>energy landscape</u> underscores the inherent nature of biomolecules as dynamic systems interconverting between structures with varying energies

H-Ras switching between its GTP-bound (red) and GDP-bound (blue) structures





Schematic illustration of H-Ras structures on energy landscape

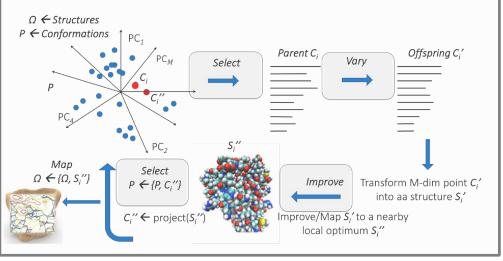


Thousands of dimensions/dofs – can leverage little data (deposited structures)

Theoretical basis? Conformational selection/population shift:

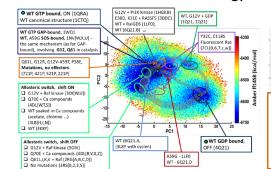
Experimentally-determined structures of bound, unbound, WT and diseased variants are *known points* in the state space!

→ Leverage them to define and initialize variable space



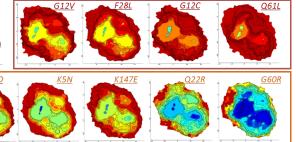
Evol Comput Conf, IEEE Intl Conf on Bioinformatics and

Biomedicine



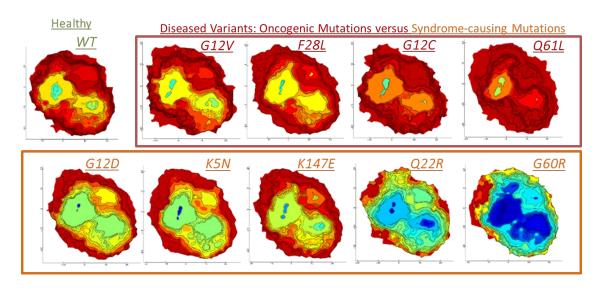
We can now see distinct mechanisms of disease at the dynamics/landscape level!

Diseased Variants: Oncogenic Mutations versus Syndrome-causing Mutations

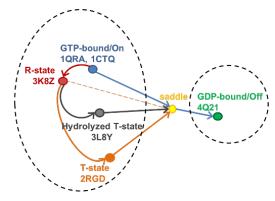


Predicting Phenotypical Impact of Mutations

Level-set based analysis allows identification of basins and saddles and reconstruction of landscape from hundreds of thousands of multi-dimensional (sampled) points corresponding to protein structures



Qiao, Akhter, Fang, Maximova, Plaku, and Shehu. From Mutations to Mechanisms and Dysfunction via Computation and Mining of Protein Energy Landscapes. BMC Genomics 19 (Suppl7):671, 2018.



Spatial and energetic distances of basins/states of interest be extracted as *landscape descriptors*/features

Variations of each landscape-extracted descriptor (across variants) correlated to variations of biochemical parameters of various activities measured in wet laboratory

Representation

Focus: Complex, Modular Objects Operating in the Presence of Geometric & Kinodynamic Constraints

Foundational Optimization Research

- Brought structurization of search spaces (from motion planning-inspired algorithms) to evolutionary algorithms
- Recast motion planning algorithms under umbrella of evolutionary computation (unified treatment → better understanding → new ideas unlocked)
- Foundational advances back to AI (distributed ML)

Discriminative:

Form → Function

[Little > Lots of Data]

Generative:

 $Form(s) \rightarrow Form\underline{s}$

 $[1/2 \rightarrow Little \rightarrow Lots]$

Representation

Focus: Complex, Modular Objects Operating in the Presence of Geometric & Kinodynamic Constraints (Interpretable)
Generative
Deep Learning

Discriminative:

Form → Function

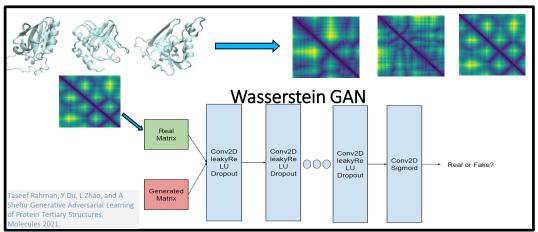
[Little > Lots of Data]

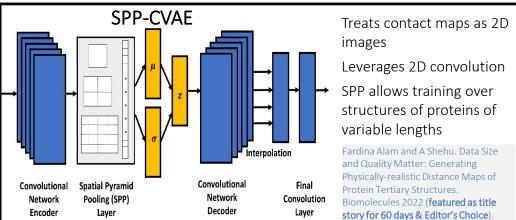
Generative:

 $Form(s) \rightarrow Form\underline{s}$

 $[1/2 \rightarrow Little \rightarrow Lots]$

Paradigm Shift: Protein Conformation Sampling via Deep Latent Variable Models

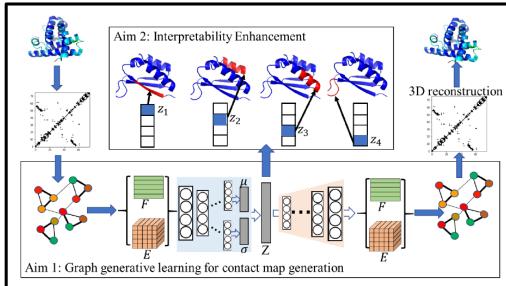




<u>Goal:</u> Learn Underlying Distribution of Experimentally-determined Protein Tertiary Structures

<u>Novel Al&ML Methodologies:</u> Generative Models – Generative Adversarial Learning, Convolutional Variational Autoencoders, Graph Variational Autoencoders with Disentanglement, and more

Our State of the Art NN Framework



Xiaojie Guo, Y Du, S Tadepalli, L Zhao, and A Shehu. Generating Tertiary Protein Structures via Interpretable Graph Variational Autoencoders. Bioinformatics Advances 2021

Taseef Rahman, Y Du, and A Shehu. Graph Representation
Learning for Protein Conformation Sampling. IEEE Intl Conf on
Comput Adv in Rio and Medical Sciences 2021.

Graph Learning and Generation (with Disentanglement)

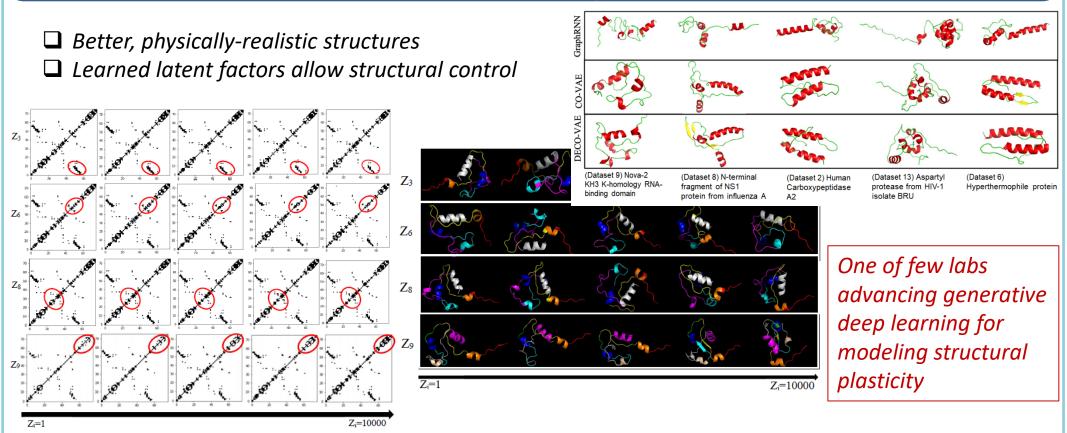


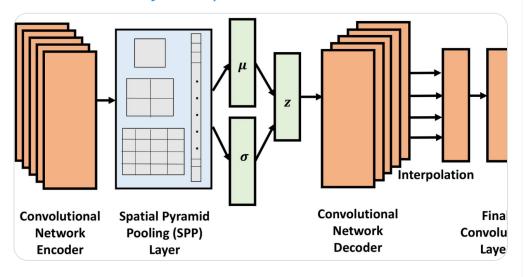
Fig. 5: Left: Generated contact graphs for a selected protein target; four semantic factors in the latent variables (i.e., Z_3 , Z_6 , Z_8 , and Z_9) control changes in the contact graphs; the value of latent variables changes from 1 to 10000; Right: corresponding reconstructed tertiary structures.

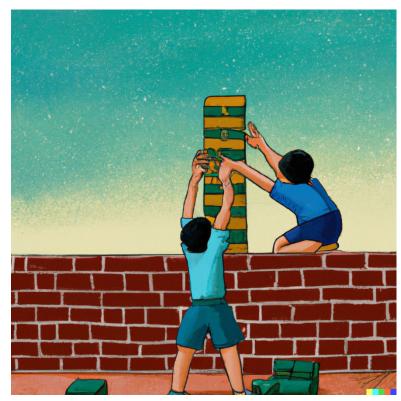
Brick by Brick

#EditorsChoice

Read now Data Size and Quality Matter:
Generating Physically-Realistic Distance Maps of
Protein Tertiary Structures" by Fardina Fathmiul Alam
and Amarda Shehu, et al.

The article <u>foot</u> bit.ly/3FWm3Tj
The list <u>foot</u> bit.ly/3VzbpHC



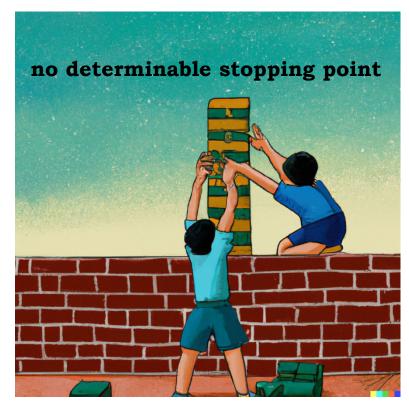


Generated with DALL-E

3:49 AM · Dec 16, 2022

Latent Factors == Concept Space?

- Are there other scientific domains where:
 - □ Latent factors provide us with an advantage
- Latent factors as concepts to explain generation process and relate to our theoretical and empirical understanding of underlying physics
- Latent factors as concepts to control generation process and link the chemical with the biological space

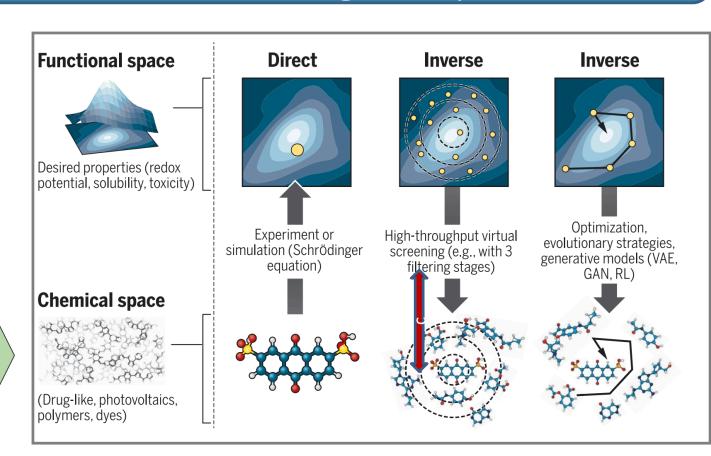


Generated with DALL-E

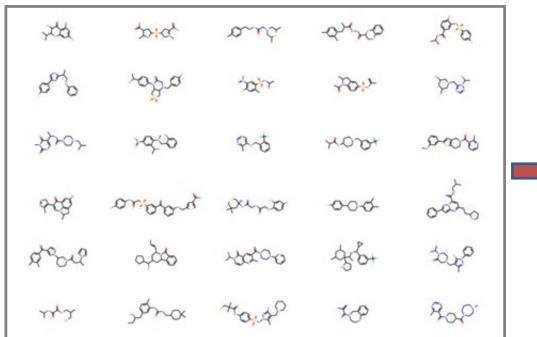
Small Molecule Generation: Linking Chemical and Biological Space

Material Science

> Drug Discovery



Small Molecule Generation: Typical Setup

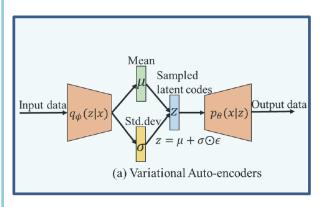


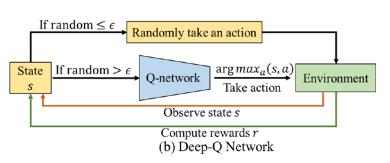
Output: Small molecules

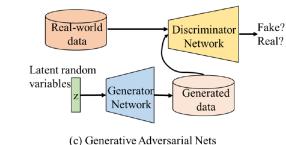
generated by a deep model

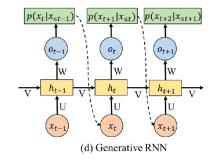
Input: Small molecules deposited in publicly-available databases

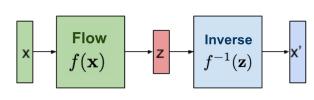
Small Molecule Generation: Typical Approaches





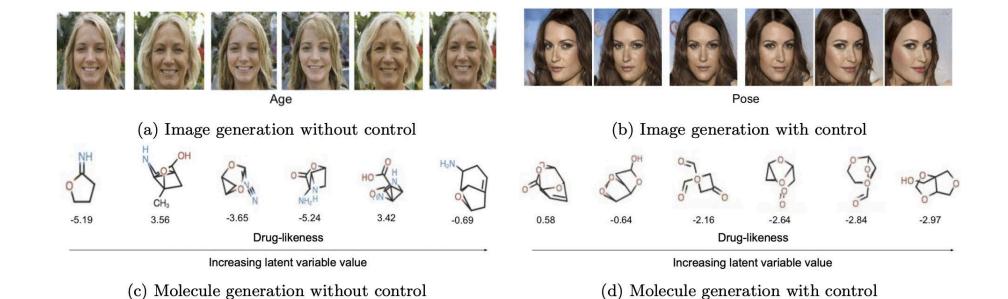






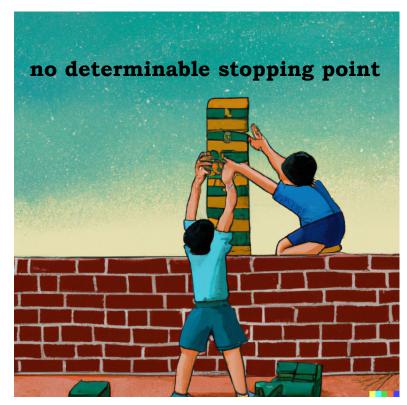
(e) Flow-based generative models

Our Objective: Generate with (Property) Control



Strengthening Encoder-Decoder Frameworks: Instructibility

- Projecting model behavior onto a concept space provides opportunities for adapting behavior based on explicit feedback from chemists in the wet laboratory
- VAE-based frameworks provide an interesting platform amenable to achieve model instructibility
- Leveraging latent factors as axis of a concept space, disentangled graph variational autoencoder (D-GraphVAE) frameworks allow control of small molecule generation in the biological/phenotypical/concept space

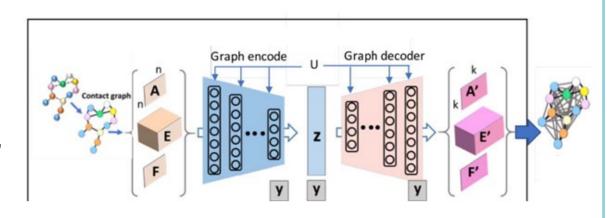


Generated with DALL-E

Our Approach:

Graph Variational Autoencoder-based Learning

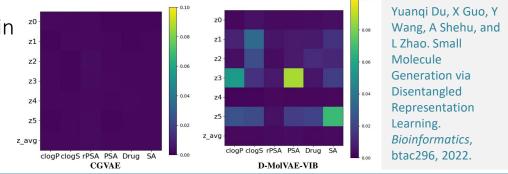
- Input: Molecular Graph G = (V, E, A, F)
- Output: Novel Molecular Graph G'
- \square Nodes Atoms V, Edges Bonds $E \subseteq V \times V$
- Node Attribute Node Features $F \in \mathbb{R}^{N \times K'}$, where k' = number of atom types
- Edge Attribute Adjacency Matrix A $\in \mathbb{R}^{N \times N \times K}$, where k = number of bond types



- The deep latent-variable framework parameterizes VAEs to learn a joint distribution over a molecular graph G and desired properties Y, given a group of learned disentangled latent variables Z.
- The generative process is formulated as p(G|Y,Z). The objective is to learn to (i) encode a molecular graph into a continuous latent space with p(Z,Y|G) and (ii) decode a molecule from the learned latent space with p(G|Z,Y).

From Small Molecule Generation to Generation with Property Control

□ Disentanglement does not degrade performance: in fact, evidence that some disentangled factors (additionally) control for molecular properties

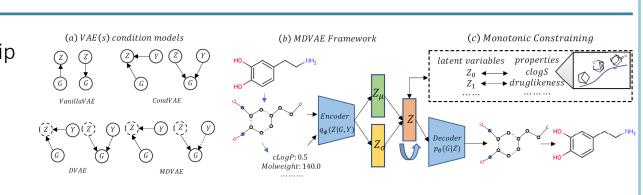


Let us then reserve some latent factors for given molecular properties and show control

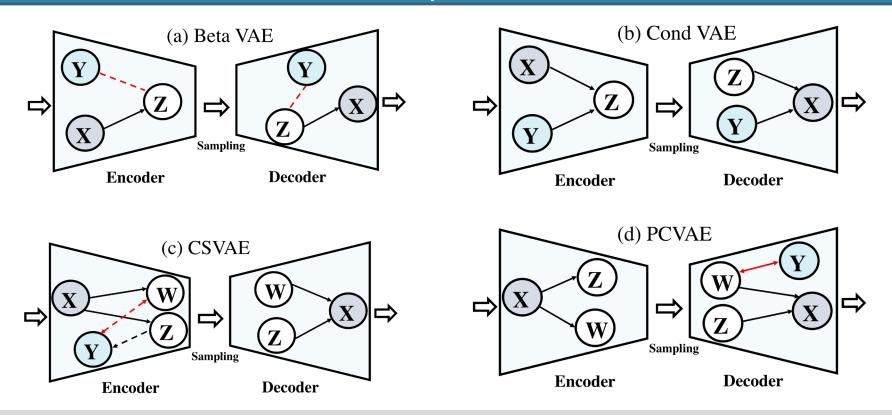
Yuanqi Du, Y Wang, F Alam, Y Lu, X Guo, L Zhao, and A Shehu. Deep Latent-Variable Models for Controllable Molecule Generation. *IEEE Intl Conf on Bioinformatics and Biomedicine*, 2021

 Let us enforce a monotonic relationship between latent factors and given properties and obtain *better* control

Yuanqi Du, X Guo, A Shehu, and L Zhao. Interpretable Molecular Graph Generation via Monotonic Constraints. *SIAM Data Mining*, 2022.



Mechanisms to Connect Latent Factors with Properties

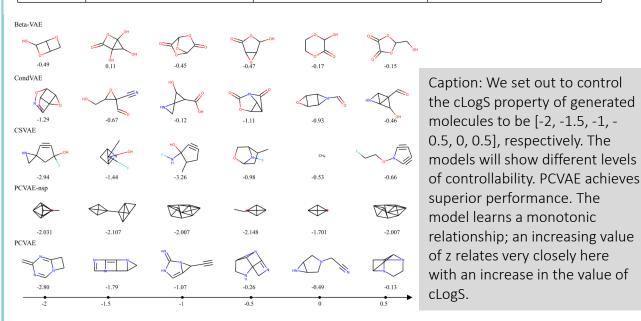


Enforcement of independence is shown by dotted red arrows; invertible dependence between two variables is represented by double arrows. Data is denoted by X and Z. W are subsets of latent variables. Y denotes targeted molecular properties.

From Small Molecule Generation to Generation with Property Control

 \Box More effective models at generating valid, unique, and novel molecules

		QM9			ZINC			MOSES	
Model	Validity	Novelty	Uniqueness	Validity	Novelty	Uniqueness	Validity	Novelty	Uniqueness
β-VAE	100.00%	98.23%	99.28%	100.00%	100.00%	99.78%	100.00%	99.92%	99.88%
CondVAE	100.00%	92.60%	90.00%	100.00%	99.98%	98.02%	100.00%	99.98%	93.30%
CSVAE	100.00%	97.01%	27.41%	100.00%	100.00%	42.72%	100.00%	100.00%	54.28%
PCVAE-nsp	100.00%	98.57%	86.94%	100.00%	100.00%	99.74%	100.00%	99.90%	99.80%
PCVAE	100.00%	97.43%	88.24%	100.00%	100.00%	99.48%	100.00%	99.96%	98.62%



More effective models at providing us with control over properties

Method	cLogP	cLogS	Drug		PSA	SA
	[-2, 2]	[-2, 2]	[-5, 5]	[120, 130]	[20, 60]	[2, 5]
β-VAE	2.45	1.01	43.83	264.59	249.72	7.03
CondVAE	2.20	0.99	22.27	42.03	183.43	4.87
CSVAE	0.67	0.96	9.24	39.73	810.45	1.86
PCVAE-nsp	2.15	3.18	8.99	38.45	765.44	1.84
PCVAE	1.13	0.62	5.41	38.59	1554.00	1.87

Caption: For each property, we generate 100 molecules with properties specified in the range with the highest density in the molecular property distribution (as in training dataset). We report the discrepancy via MSE between properties of molecules generated in this manner and expected properties predefined within the highest property density region.

Y Du, X Guo, Y Wang, A Shehu, and L Zhao. Small Molecule Generation via Disentangled Representation Learning. *Bioinformatics*, btac296, 2022. Y Du, X Guo, A Shehu, and L Zhao. Interpretable Molecular Graph

Generation via Monotonic Constraints. *SIAM Data Mining*, 2022.

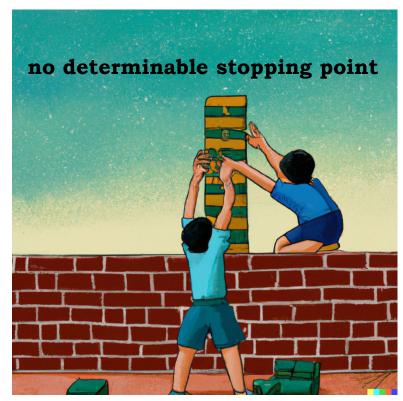
Y Du, Y Wang, F Alam, Y Lu, X Guo, L Zhao, and A Shehu. Deep Latent-Variable Models for Controllable Molecule Generation. *IEEE Intl Conf on Bioinformatics and Biomedicine*, 2021

Brick by Brick

What about correlated properties?

Yuanqi Du, [..], A Shehu, and L Zhao. Multi-objective Deep Data Generation with Correlated Property Control. *NeurIPS*, 2022.

- What about incomplete and noisy data? → our KDD 2022 workshop paper
- What about very fine-granular control with a specific target in mind?
- What about specific binding affinities?
- □ Can you actually design these things in the lab and learn from the wet laboratory? → our 2023 NSF IIBR Grant



Generated with DALL-E

Representation

How do you **incorporate** millions of sequences, hundreds of thousands of structures, thousands of known interactions, millions of short reads, thousands of wet-lab characterization data, etc.

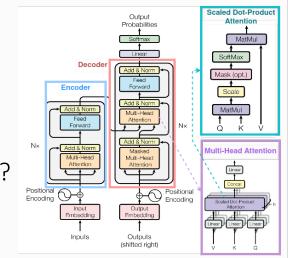
Multi-modal Foundation Models

How do you leverage knowledge for lighter models?

Grounded Foundation Models

How do you catch up to the transformer with alternative architectures?

Small State Space Models



DISCHIMINALIVE:

Form → Function

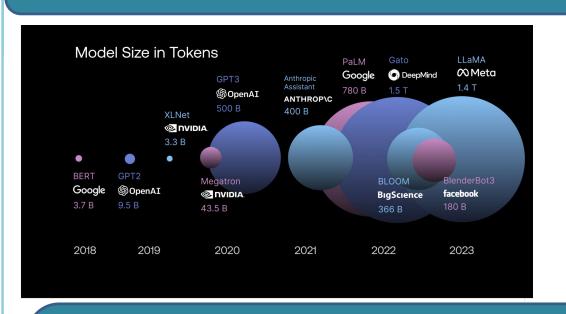
[Little \rightarrow Lots of Data]

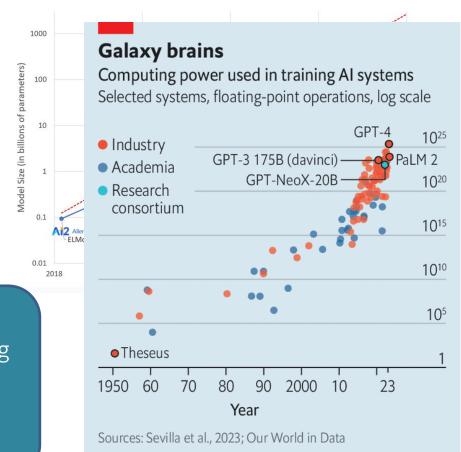
Generative:

Form(s) \rightarrow Form<u>s</u>

 $[1/2 \rightarrow Little \rightarrow Lots]$

Progress NOT by Scale Alone!





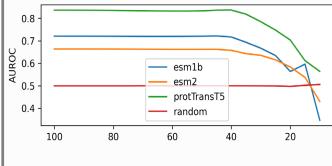
Objectives:

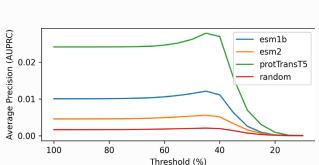
Lighter models by situating them in and exploiting knowledge and structure in biological data Beyond the transformer architecture (foundation model research) [2023 NSF III Medium Grant]

Progress NOT by Scale!

Remote Homology

Finding: Employed a rigorous setting, by lowering sequence identity, we report that current state-of-the-art, large protein language models are still underperforming in the twilight zone of very low sequence identity



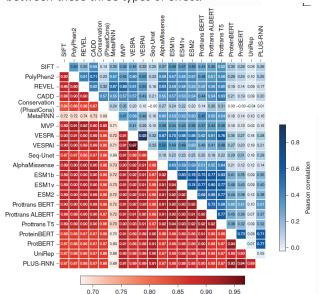


Kabir, Moldwin, and Shehu. A Comparative Analysis of Transformerbased Protein Language Models for Remote Homology Prediction. ACM-BCB 2023 and AAAI-W 2024. Best Paper Award.

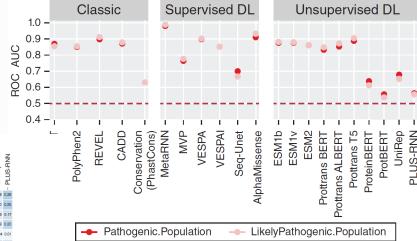
Variant Prediction

There are three broad variant effects: (evolutionary) fitness effect, pathogenicity (disease causation), and (molecular) function change.

Existing computational methods may have largely failed to recognize the difference between these three types of effect.



Correlation of variant predictor scores for the population frequency data set is reported as the Pearson correlation coefficient (blue), and the fraction of consensus binary predictions (FCBPs) (red). Higher scores (darker colors) indicate a better correlation.



Major Findings: Of the unsupervised DL methods, ESM (650M) and ProtTrans (11B) were able to differentiate clinically significant variants from the general population better than simply using conservation. These models were also as good as or better than many of the supervised methods. However, as neither of the unsupervised methods captured variant population frequency well, the rarity of pathogenic variants is an unlikely cause of these models' pathogenicity classification abilities.

Bromberg, Kabir, Ramakrishnan, and Shehu. Variant prediction in the Age of Machine Learning. Machine Learning and Protein Science, Cold Spring Harbor Laboratory Press, 2024.

Strengthening Biological Foundation Models via Grounding

The data at our disposal are in large part imperfect proxies of the underlying physics that governs the detailed behavior of molecular machineries in the living cell

- Biological priors:
- additional data modalities
- physics-based knowledge

Prior Knowledge in Data or First Principles (Physics)

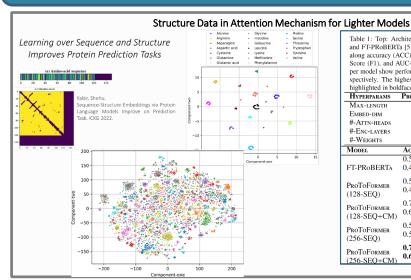


Table 1: Top: Architectural details of ProToFormer [170] and FT-PRoBERTa [5]. Bottom: Performance comparison along accuracy (ACC), precision (PRE), recall (REC), F1-Score (F1), and AUC-ROC score (AR). Consecutive rows per model show performance on validation and test set, respectively. The highest values on a metric on each set are highlighted in boldface font.

Hyperbaskans ProToFormer FT-PROBERTA.

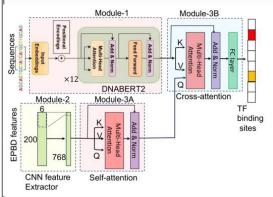
Hyperparams	ProTo	Former	FT-F	PRoBEI	RTA
Max-length	512		512		
Embed-dim	128, 256		768		
#-Attn-heads	8		12		
#-Enc-layers	:	5	5		
#-Weights	13	M	44M		
Model	Acc	Pre	REC	F1	AR
	0.542	0.600	0.542	0.523	0.989
FT-PRoBERTA	0.472	0.614	0.472	0.432	0.966
ProToFormer	0.526	0.600	0.526	0.526	0.987
(128-SEQ)	0.486	0.578	0.486	0.461	0.984
ProToFormer	0.720	0.762	0.720	0.713	0.992
(128-SEQ+CM)	0.664	0.741	0.664	0.664	0.985
DT- E	0.565	0.636	0.565	0.562	0.985
ProToFormer (256-SEQ)	0.516	0.609	0.516	0.490	0.975
DT- F	0.742	0.783	0.742	0.734	0.992
ProToFormer (256-SEQ+CM)	0.678	0.752	0.678	0.643	0.979

A powerful, versatile framework that can additionally in hierarchical functional relationships Gene Ontology (GO) Term Hierarchy January January

(Hierarchical) Function Relatio	nships in Joint Representation Learning
mework that can additionally incorp cal functional relationships	Of G temperature moderns architecture A profess recognice PORT FOR PORT T
COLORISTO COLORIST COLOR	Sing of the reconstant of the control of the contro
Metrics GO Deept	GoPlus DeepChoi-ESM-1 GOProFormer

Metrics	GO	DeepG	oPlus	DeepCl	noi-ESM-1	GOPro	Former
		Val	Test	Val	Test	Val	Test
	BP	0.460	0.491	0.499	0.529	0.526	0.557
Fmax	CC	0.739	0.709	0.738	0.712	0.739	0.729
	MF	0.457	0.436	0.524	0.541	0.580	0.623
	BP	10.499	9.721	10.074	9.080	9.600	8.810
Smin	CC	4.598	5.487	4.608	5.359	4.541	5.073
	MF	7.719	8.267	7.565	7.748	6.338	6.308
	BP	0.439	0.469	0.466	0.495	0.526	0.557
AUPRC	CC	0.691	0.649	0.782	0.751	0.724	0.693
	MF	0.368	0.350	0.513	0.517	0.564	0.584

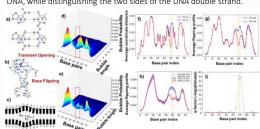
A Kabir and A Shehu. GOProFormer: A Multi-Modal Transformer Method for Gene Ontology Protein Function Prediction. Biomolecules 12(11):1709, 2022.



A Kabir, M Bhattarai, K Rasmussen, A Shehu, A Bishop, B Alexandrov, A Usheva. Advancing Transcription Factor Binding Site Prediction Using DNA Breathing Dynamics and Sequence Transformers via Cross Attention, BioRXiv 2024.

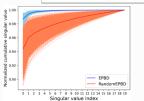
Leveraging Cross-attention

Schematic representation of the Metropolis-Hasting MCMC Algorithm for DNA State Transitions in pyDNA-EPBD. The EPBD model is a quasitwo-dimensional nonlinear model that describes the transverse opening motion of the complementary strands of double-stranded DNA, while distinguishing the two sides of the DNA double strand.

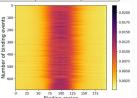


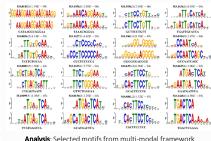
A Kabir, M Bhattarai, K Rasmussen, A Shehu, A Usheva, A Bishop, and B Alexandrov. Dynamically Active Zone of DNA Breathing. Bioinformatics 39(11):btad699, 2023.

Methods	AUROC	AUPR
DNABERT2-finetuned	0.918	0.296
RandEPBD-DNABERT2	0.917	0.296
VanillaEPBD-DNABERT2-coord	0.921	0.311
VanillaEPBD-DNABERT2-coordflip	0.920	0.308
EPBD-DNABERT2-crossattn	0.949	0.326



Analysis: Normalized cumulative singular values of 10,000 input DNA sequences corresponding to EPBD-DNABERT2-crossattn (blue) and randomly permuted EPBD features (red) shows that EPBD breathing dynamics guide DNABERT2 for extracting meanineful information.





Analysis: Selected motifs from multi-modal framework analysis with cross attention weights for visual motif comparison using weblogos (Fig. C). The top panel shows the motif reported by the JASPAR 2022 database, and the bottom panel is the corresponding motifs found by EPBD-DNABERT2-crossattn in each panel. Our model can effectively inpionit motifs with implications for understanding the complexities of gene regulation.

Strengthening Biological Foundation Models via Grounding & Aligning

□ The data at our disposal are in large part imperfect proxies of the underlying physics that governs the detailed behavior of molecular machineries in the living cell

- Biological priors:
- additional data modalities
- physics-based knowledge

- When contextualized to biological research, models need to be aligned with the underlying physics that governs all life
- However, our understanding of the underlying physics itself is distorted/narrowed through semiempirical models
- Our approach: key metrics that capture physical realism at various levels of sophistication and benchmark datasets that truly expose model alignment in molecular biology

Strengthening Biological Foundation Models via Grounding & Aligning

□ The data at our disposal are in large part imperfect proxies of the underlying physics that governs the detailed behavior of molecular machineries in the living cell

- Biological priors:
- additional data modalities
- physics-based knowledge

- When contextualized to biological research, models need to be aligned with the underlying physics that governs all life
- However, our understanding of the underlying physics itself is distorted/narrowed through semiempirical models
- Our approach: key metrics that capture physical realism at various levels of sophistication and benchmark datasets that truly expose model alignment in molecular biology

BIOINFORMATICS ADVANCES

Issues Advance articles

Submit ▼

Alerts

About ▼

Bioinformatics Advance

Volume 4, Issue 1 2024

(In Progress)

Article Contents

Abstract

1 Introduction

2 Methods

4 Conclusion

Acknowledgements

Supplementary data

Conflict of interest

3 Results and discussion

Funding

Data availability

References

Supplementary data

JOURNAL ARTICLE

In the twilight zone of protein sequence homology: do protein language models learn protein structure?

a

Anowarul Kabir ▼, Asher Moldwin, Yana Bromberg, Amarda Shehu ▼

Bioinformatics Advances, Volume 4, Issue 1, 2024, vbae119,

https://doi.org/10.1093/bioadv/vbae119

Published: 17 August 2024 Article history ▼

Abstract

Motivation

Protein language models based on the transformer architecture are increasingly improving performance on protein prediction tasks, including secondary structure, subcellular localization, and more. Despite being trained only on protein sequences, protein language models appear to implicitly learn protein structure. This paper investigates whether sequence representations learned by protein language models encode structural information and to what extent.

Results

We address this by evaluating protein language models on remote homology prediction, where identifying remote homologs from sequence information alone requires structural knowledge, especially in the "twilight zone" of very low sequence identity. Through rigorous testing at progressively lower sequence identities, we profile the performance of protein language models ranging from millions to billions of parameters in a zero-shot setting. Our

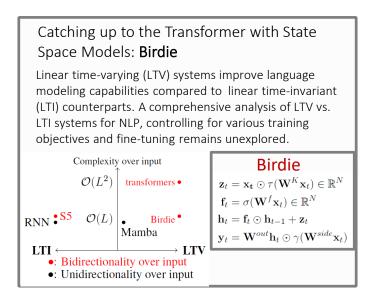
When contextualized to biological research, models need to be aligned with the underlying physics that governs all life

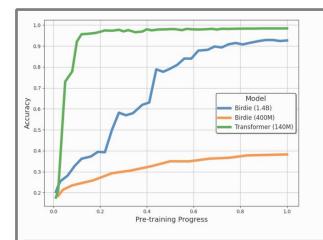
- However, our understanding of the underlying physics itself is distorted/narrowed through semi-empirical models
 - Our approach: key metrics that capture physical realism at various levels of sophistication and benchmark datasets that truly expose model alignment in molecular biology

The Quest for Small AI: Beyond the Transformer?

State Space Models (SSMs) are emerging as alternatives to Transformers but struggle with tasks needing long-range interactions, such as text copying and multi-query associative recall

Our contribution: a minimalist SSM architecture with novel pre-training objectives and a dynamic mixture of pre-training objectives via reinforcement learning





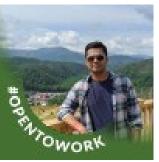


A comprehensive comparison pitches Birdie against transformer-based models at various configurations (base versus instruction fine tuning, 400M versus 1.4Bparameters, and various pre-training objectives) over14max-likelihoodtasks from the Eleuther Al LMHarness

Model	Objective	Avg Task Accuracy
Inst	truction Tune	d, 1.4B
Birdie (RL-MoD)	RL-MoD	45.5%
Attention (CLM)	CLM	43.0%
Birdie (PT5)	PT5	42.5%
Birdie (CLM)	CLM	40.9%
I	Base Models, 1	1.4B
Birdie (PT5)	PT5	$\boldsymbol{41.0\%}$
Birdie (CLM)	CLM	40.9%
Birdie (RL-MoD)	RL-MoD	40.6%
Attention (CLM)	CLM	40.1%
Inst	ruction Tuned	l, 400M
Birdie (UL2)	UL2	40.3%
Attention (UL2)	UL2	40.2%
Hawk (PT5)	PT5	39.3%
Attention (CLM)	CLM	39.2%
Hawk (CLM)	CLM	38.4%
В	ase Models, 4	00M
Birdie (CLM)	CLM	40.3%
Birdie (RL-MoD)	RL-MoD	40.1%
Attention (CLM)	CLM	39.7%
Birdie (UL2)	UL2	39.5%
Birdie (PT5)	PT5	39.3%
Attention (UL2)	UL2	39.2%
Hawk (PT5)	PT5	38.8%
Hawk (CLM)	CLM	38.4%

Students and Collaborators

Fardina Alam



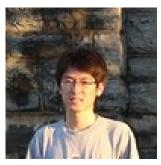
Toki Inan

Taseef Rahman

Samuel Blouir

Manpriya Dua

Anowarul Kabir



Liang Zhao

Yana Bromberg Emory University Emory University

Kevin Minbiole Villanova University

William Wuest **Emory University**

Saleh Alkhalifa Amgen

J.P. Singh George Mason

My heart-felt apologies to the 3 postdoctoral students, 23 PhD students, 14 MS students, 38 undergraduate students, and 19 highschool students that could not be placed in one slide but have been a privilege to work with and pursue scientific research together.

... and to my collaborators, Ruth Nussinov (NIH), Chen Keasar (Ben Gurion), Bojan Alexandrov (LANL), and many others that have enriched my scientific journey and have made me a better scientist and person.