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Trends in HPC: Computing-10 Gap and Ensembles of Jobs

Widening 10 Gap Rising Importance of Ensembles
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More generated data to move slower to storage




Trends in HPC: Computing-10 Gap and Ensembles of Jobs

Widening 10 Gap Rising Importance of Ensembles
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More local data to build a global knowledge from
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Extending HPC to Integrate Data Analytics

Sequential mode:

| Application I
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Extending HPC to Integrate Data Analytics

Sequential mode: Pipeline mode:

| Application I

! Data + metadata
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Extending HPC to Integrate Data Analytics

Sequential mode: Pipeline mode:
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Augmenting HPC with In Situ Analytics

number of cores

number of nodes

Example of software tools:

» DataSpaces (Rutgers U. / Utah U.)
* Decaf (ANL)
« DYAD (LLNL)




Major Computational Domains on NSF Systems

Biophysics

Material Research
Chemistry -
Biochemistry and Molecular Structures
Astronomical Sciences
Condensed Matter Physics
Fluid and Particulate Systems
Advanced Scientific Computing
Systematic and Population Biology -
Physics
Others
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Multiscale Computational Software Ecosystem
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Classical Molecular Dynamics Simulations

A a"nc,:“”":'f‘ha"“‘f" MD algorithm:
Given the amino acidic atoms,
Run np steps:
\/\A\J ~ —>Forces on single atoms G
TP T SecondaryPro sucure - Atom acceleration
A N G > Atom velocity
- g\v? S - New position —
Every n steps (n << np),
Output atom coordinates (frame)
pleaied sheet it L
oot Widening 10 Gap = more data are
alphachek generated and moved to the slower storage
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Classical Molecular Dynamics Simulations

A MD simulation is an ensemble of MD
jobs -- hundreds of thousands jobs

Rising importance of ensembles
- More local data to build a global
knowledge from
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Capturing Rare Events in Trajectories

Transformations: — S‘b
e.g., from B-sheets
to a-helixes

Movements:
e.g., rotation of a-helix




From Visualization-driven Analytics of MD Trajectories ...

Frames (or snapshots) of an MD trajectory with a stride of 5 steps:

Frame 75

Frame 55 Frame 60
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... To In Situ Analytics of MD Simulations

Frames (or snapshots) of an MD trajectory with a stride of 5 steps:

Frame 75

Frame 55 Frame 60

* We want to capture what is going on in each frame without:
= Disrupting the simulation (e.g., stealing CPU and memory on the node)

= Moving all the frames to a central file system and analyzing them once the
simulation is over

= Comparing each frame with past frames of the same job
= Comparing each frame with frames of other jobs

21



In Situ Analytics of MD Trajectories

Frames (or snapshots) of an MD trajectory with a stride of 5 steps:

Collective
variables (time 55)




In Situ Analytics of MD Trajectories

Frames (or snapshots) of an MD trajectory with a stride of 5 steps:

Collective
variables (time 60)




In Situ Analytics of MD Trajectories

Frames (or snapshots) of an MD trajectory with a stride of 5 steps:

Collective
variables (time 65)




In Situ Analytics of MD Trajectories

Frames (or snapshots) of an MD trajectory with a stride of 5 steps:

Collective
variables (time 70)




In Situ Analytics of MD Trajectories

Frames (or snapshots) of an MD trajectory with a stride of 5 steps:

Frame 75
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In Situ Analytics of MD Trajectories

Frames (or snapshots) of an MD trajectory with a stride of 5 steps:

Collective
variables (time 80)




In Situ Analytics of MD Trajectories

Frame 75

Frame 55 Frame 60

Collective Collective Collective Collective Collective Collective
variables(55) variables(60) variables(65) variables(70) variables(75) variables(80)

Travis Johnston, Buyu Zhang, Adam Liwo, Silvia Crivelli, and Michela Taufer.

o “In-Situ Data Analysis and Indexing of Protein Trajectories,” JCC 2017.



In Situ Analytics of MD Trajectories

Collective Collective Collective Collective Collective Collective
variables(55) variables(60) variables(65) variables(70) variables(75) variables(80)

Collective variables serve as proxy for
structural and conformational changes




The Machine Learning Myth
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The Machine Learning Myth

BIGORANGE
31 BIGIDEAS



(Missing) Data / Software Ecosystem

Data Machine

Resource Monitoring

Verification
Management

Data
Configuration Collection

Serving

Infrastructure

ML
code AnalySiS tools

Process

Feature

Extractions Management Tools

“Only a small fraction of real-world ML systems is composed of the ML code” D. Sculley, Gary Holt,
Daniel Golovin, Eugene Davydov, Todd Phillips Hidden Technical Debt in Machine Learning Systems
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Buﬂdmg the MD Ecosystem

MD code
(e.g., GROMACS)

Data Generation




Building the MD Ecosystem
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Buﬂdmg the MD Ecosystem

[

I MD code ]
| (e.g., GROMACS) !
I |
; , |
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Data Generation Data Storage
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Buﬂdmg the MD Ecosystem
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Buﬂdmg the MD Ecosystem
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Capturing Knowledge through Collective Variables

Collective
variables

algorithms
Analytics
Dataflow representations
+ algorithms
/
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CV: Largest Eigenvalue of a Secondary Structures

Given the single, local frame of a
MD job at time t

C*atoms




CV: Largest Eigenvalue of a Secondary Structures

Build the substructure

Measure the distance Euclidean Distance Matrix (D)
between C% and C% C,

0 X X X X X

" c|x 0 d x X X

co. o7 g’ X X X 0 X X

' °
d ’J d:‘ X X X x 0 X
| X X X X X 0

Compute largest eigenvalue é Amax
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CV: Largest Eigenvalue of a Secondary Structures

* Largest eigenvalues of the
Cartesian distance matrix for the

C% atoms of a secondary structure S . '
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CV: Largest Eigenvalue of a Secondary Structure

* Largest eigenvalues of the o0 _
Cartesian distance matrix for the '
C% atoms of a secondary structure
at a given time t (frame,)
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CV: Largest Eigenvalue of a Secondary Structure

* Largest eigenvalues of the
Cartesian distance matrix for the
C% atoms of a secondary structure
at a given time t (frame,)

<

S 888
ggg

Folder b
o-Helix with n C* atoms

Largest eigenvalue

C* atoms




CV: Largest Eigenvalue of a Secondary Structure

Use case: folding of a simple a- 7000
. . Folded a-helix
Helix with 10 C* atoms 6000 -
% 5000 p-
Largest eigenvalue = A =
% 4000
=
+— 3000
.; O
—\—\ b \/ % 2000 . _
e - e ek e gt e ] o o
100 10 10 2 = =
Frame 55 Frame 65 Frame 80
0O 50 100 150 200

ASS A65

Frame Number

Travis Johnston, Buyu Zhang, Adam Liwo, Silvia Crivelli, and Michela Taufer.

a4 “In-Situ Data Analysis and Indexing of Protein Trajectories,” JCC 2017.



Application: Minimizing Folding Time of FS-Peptide

21 amino acid peptide
0.05®  Folds into an a-helix on
the 200ns timescale
® Approx. 100 jobs

Pronk et al., Molecular Simulation Workflows as Parallel Algorithms: The Execution Engine of Copernicus, a
Distributed High-Performance Computing Platform, Journal of Chemical Theory and Computation, 2015
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Application: Minimizing Folding Time of FS-Peptide

@ 16000
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Pronk et al., Molecular Simulation Workflows as Parallel Algorithms: The Execution Engine of Copernicus, a
Distributed High-Performance Computing Platform, Journal of Chemical Theory and Computation, 2015
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Application: Minimizing Folding Time of FS-Peptide

35.0%

30.0% A

25.0% A

20.0%

15.0% 1

10.0% A

5.0% 1

Num. of trajectories (%

0.0% -

0% 20% 40% 60% B80% 100%
Num. of MD steps saved (%)

70.0% of trajectories terminate early
Avg. term. time for all trajectories: 264 ns
Avg. term. time for preempted
trajectories: 207 ns
Total steps saved: 135,054 (33.76% of
ensemble)

21 amino acid peptide
0.05®  Folds into an a-helix on
the 200ns timescale
® Approx. 100 jobs

Pronk et al., Molecular Simulation Workflows as Parallel Algorithms: The Execution Engine of Copernicus, a
Distributed High-Performance Computing Platform, Journal of Chemical Theory and Computation, 2015
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CV: Larger Eigenvalues of Ternary Structures

Given the single, local frame of a
MD job at time t




CV: Larger Eigenvalues of Ternary Structures

Measure the distance Build a bipartite distance matrix by
between C% and CF; comparing two substructures
i
caj d Ch. | 00 0 X X X
o o0 dx x
p=|0 00 X X X
X d X 000
x x X 000
Computelargesteigenvalue* Amax X X X 0 0 0




Application: Capturing Movement of a-helices

Capture movement of structures (a-helices)
with respect to each other

T. Johnston, B. Zhang, A. Liwo, S. Crivelli, and M. Taufer. In-Situ Data Analytics and Indexing of Protein Trajectories.
Journal of Computational Chemistry (JCC), 38(16):1419-1430, 2017.
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Application: Capturing Movement of a-helices

Monitor largest eigenvalue of bipartite distance matrj

Helix 1-Helix 2 Helix 1-Helix 3 Helix 2-Helix 3
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First and second a-helices appear stable; third helix moves




Movement of a-helices
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CV: Effective Sample Size (ESS)

2MQ8 protein: two of the four helices transform into strands
EffECtlve Sample Size (ESS) Frame 7686 Frame 8925

Metric capturing structural
changes over a sample of n
observations in the trajectory
(n << total num. steps)
If observations are
autocorrelated:
— no major changes in sequence
of frames v
- else rare event has occurred

Frame numbers

53



CV: Graphic Encoding

3D Cartesian Multi-fold Surface
representation representation representation




CV: Graphic Encoding

3D Cartesian Multi-fold Surface Graphic
representation representation representation encoding
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CV: Graphic Encoding Algorithm

Backbone 1.- Ramachandran Plot
dihedral angles
I >

c vl

4.- Final Encoding

K’ el M

gis @

Psi (Degrees)

l

180 136 w0 “ 0 an °0 11 "o

Phi (Degrees)

b '
-
Original 3D protein P— — 1
1
" :' Pk B IV .
| > - + - Every channel encodes
Atoms’ Cartesian — ‘-,—f—h ,- information associated with
coordinates™* L L particular secondary structures

2.- Distance Matrix

3.- Channel Encoding and their spatial relationship
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Application: Capturing Unraveling of Loop TM6

Protein: Opsin

Opsins are proteins involved in the vision
process, supporting the conversion of
light into electrochemical signals

Use graphical representations as
indicators of what areas of a protein are
relevant for particular conformational changes



Application: Capturing Unraveling of Loop TM6

Protein: Opsin Frame 50 Frame 1500 Frame 1950
£




Application: Capturing Unraveling of Loop TM6

Protein: Opsin Frame 50 Frame 1500 Frame 1950

Example of transfer learning: we can take an
existing neural network such as GEM-net that
has been trained on some dataset and re-

purposing it for the analysis of trajectories




MD: an Ensemble of Distributed CVs

A MD simulation is an ensemble of MD
jobs -- hundreds of thousands jobs

Rising importance of ensembles
- More local data to build a global
knowledge from




(Missing) Data / Software Ecosystem

Data Machine

Resource Monitoring

Verification
Management

Data
Configuration Collection

Serving

Infrastructure

ML
code AnalySiS tools

Process

Feature

Extractions Management Tools

“Only a small fraction of real-world ML systems is composed of the ML code” D. Sculley, Gary Holt,
Daniel Golovin, Eugene Davydov, Todd Phillips Hidden Technical Debt in Machine Learning Systems
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Run n-Stride
simulation steps
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(e.g., GROMACS)

( 0 o
In situ analytics

Analytics
representations

+ algorithms
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https://analytics4md.org/




Run n-Stride
simulation steps

MD code Analysis of Analysis of
(e.g., GROMACS) Collective Collective
Plumed Variable A Variable B
- J —_ N\ J _—— S =
l A4MD API L A4MD API 1 A4MD API :
| ... | - T S re——
In-m? mory DataSpaces
staging

Inter-application _
data sharing Parallel File System (PFS)
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MD frame generation (In situ analytics ) (In situ analytics A
Run n-Stride simulation :
steps
MD code
(e.g., GROMACS) Analysis of Collective Analysis of Collective
Plumed Variable A Variable B
o _ _AdwMDARI_ _ v O Aavoan_ ___ v D _AdvpaAR
In-memory
s E DataSpaces
r===""AdamDAPI _ ~ ~ — —

MD frame generation

Run n-Stride simulation
steps

MD code
(e.g., GROMACS)

Plumed
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MD frame generation

Run n-Stride simulation
steps

MD code
(e.g., GROMACS)

Plumed
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( Predictions / Steering

-

* Understand and annotate
dynamics in MD trajectories

* Enhance adaptive sampling in
MD trajectories

* Enable on-the-fly tuning of

Run n-Stride
simulation steps

MD code

Analytics .
(e.g., GROI\/IACS) representations MD workflows (i.e., stop,
| ) . |/ start, and fork MD jobs)
Plumed w, + algorithms
|/

— - J ——— AN \_ .
| A4MD API | | A4MD API | : A4MD API |
OIS U U —— s T

In-memor

. y | DataSpaces |
staging

Inter-application % PFS analics
data sharing m\m!icu,!ar
https://analytics4md.org/ SyhaIm|cs
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Mission of the analytics4md Project

*  Formulate new in situ methods to trace molecular
events by locally reducing knowledge of high-

dimensional molecular organization into collective m:

variables (CVs)
* Design new data representations and extend
unsupervised machine learning techniques to

build an explicit global organization of structural

and temporal CVs analythS

* Develop new in situ workflow management that Jor molecular
integrates simulation and analytics into complex dynamics
MD workflows https://analytics4md.org/

* Train a diverse community in the use of the new NSE I1S:
MD workflows 1741057, 1740990, 1741040, 1841758
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