
Abstract

While we speculate what exascale hardware might look like, state-of-the-art numerics
and our machines already diverge. Many new hardware generations or ingredients such
as Skylake, manycores or Intel’s Optane reduce caches or cache backuping per core,
make more and more cores share one interconnect, or introduce additional memory
levels with high latency. At the same time, many modern algorithmic paradigms such as
multigrid, particle-in-cell or predictor-corrector schemes require irregular, non-continuous,
repeated memory accesses. As a result, data assembly, movement and exchange,
i.e. communication, become constraining factors when we upscale or tune scientific
software. We have to avoid them.
In this talk, we generalise the term communication-avoiding. We make it comprise (i) the
reduction of data volume, (ii) the elimination of (meta) data generation, (iii) the reduction
of data exchange frequency, (iv) the homogenisation of data access, (v) data access
hiding and (vi) the localisation of data transfers. These criteria apply to both classic data
exchange between compute nodes as well as data movements on the chip.
Communication-avoiding then tackles the problematic divergence sketched above. While
every code might require tailored solutions of its own to become communication-avoiding,
we present some algorithmic techniques - for multigrid, particle-in-cell and
predictor-corrector schemes - which seem to be generic patterns. They can inspire us
how to write communication-avoiding software for various applications. That is the good
news. The bad news is: you still have to program you algorithms in the right way.

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 1 / 60

Stop talking to me—some
communication-avoiding programming patterns

PPAM 2019
D.E. Charrier, B. Hazelwood, B. Reps, B. Verleye, M. Weinzierl, me and many others

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 671698 (ExaHyPE).

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 1 / 60

https://www.youtube.com/channel/UC1aAT5nSVeAwdYbifdxW1EQ

https://www.youtube.com/channel/UC1aAT5nSVeAwdYbifdxW1EQ

Why I love to think about algorithms and their
implementation . . .

Computational X = X relying on computer simulation

Faster computers

(computer engineering)

Faster codes

(scientific computing)

Get results faster
Handle bigger setups

C. Johnson (SCI): Before the great discovery was the creation of a new tool!
(from the movie “The Golden Age of Computing”)

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 3 / 60

The two facets of “better tools”

www.top500.org, 2019-09-07 (left)

D. Keyes: SCaLeS Report, Vol. 2, 2004 (right)

I Example: transition from Gauss elimination into multigrid is worth 35 years of
computer evolution [SCaLeS]

I Both sides improve our tools, yet are not orthogonal

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 4 / 60

www.top500.org

Increasing hardware concurrency impacts software

I Hierarchical (block-structured) sparse matrices
dense blocks depending on content (ranks forH; non-zeroes) and matrix size

I Short range forces
cut off radius (cell size) depending on interaction potential and number of particles

I Algebraic-geometric multigrid
geometric multigrid in smooth, high resolution areas and algebraic multigrid otherwise (*)

(*) See Charles Murray’s talk on Monday about lazy operator assembly.

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 5 / 60

The bitter taste of “co”-design (the Sutter effect)

H. Sutter: The Free Lunch Is Over

I Hardware’s evolution has severe
impact on software/algorithms

I Don’t be naı̈ve: hardware poses
challenges to algorithms(*)

I Sometimes, for some problem sizes,
“inferior” algorithms are superior
(cmp. previous slide)

I And we haven’t even started to
discuss ML/NNs
(even though they drive the HW evolution)

(*) https://www.hpcwire.com/2016/07/12/isc-workshop-tackles-co-developments-thorny-challenges

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 6 / 60

https://www.hpcwire.com/2016/07/12/isc-workshop-tackles-co-developments-thorny-challenges

Two flavours of change management

Riemann

Riemann

Corrector

STP

Corrector

Observation: The paradigm shift on the hardware side has re-
calibrated and changed the correlation of FLOP numbers to per-
formance.

State of the art:
I Divide et impera: decompose problems into tasks
I Balance/recalibrate against new cost model: rethink “less efficient”
I All important, but . . .

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 7 / 60

Where are the “exascale” codes?

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 8 / 60

Some detail is missing here

Switching from massive roasts to tappas makes no free lunch!

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 9 / 60

Data movements become showstopper

2.
3

G
B

yt
e/

co
re

332 GByte/s (w/o multiply/add)
2x14 cores

343 GByte/s

92 GByte/s

39 GByte/s/core

6.7 GByte/s/core

Left: Node of SuperMUC Phase 2; right: SuperMUC c©IBM

Vertical New memory layers (Optane), new cache modi (Skylake)

Horizontal More cores per node, cache and network competition

The next big jumps on the algorithm side

eliminate communication between computer components

= introduce communication-avoiding algorithms

but don’t give up on the cool mathematics/algorithms

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 10 / 60

Outline

Motivation

Demonstrators

Volume reduction

Single-touch implementations

Reduce synchronisation frequency

Homogenisation

Localisation

Wrap-up

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 11 / 60

Particle-In-Cell (PIC)

1. Solve PDE on (dynamically
adaptive) mesh

2. Interpolate PDE solution onto
particles

3. Move particles (suprathermal)

4. Restrict to PDE’s rhs

Weinzierl, T. The Peano software—parallel, automaton-based, dynamically adaptive grid traversals. ACM Transactions on Mathematical
Software (TOMS), 45(2), 14:1–14:41, 2019, arXiv:1506.04496.
Weinzierl, T., Verleye, B., Henri, P., Roose, D. Two Particle-in-Grid realizations on Spacetrees. Parallel Computing 52, 42–64, 2016.
arXiv:1508.02435
Eckhardt, W., Glas, R., Korzh, D., Wallner, S., Weinzierl, T. (2016), On-the-fly memory compression for multibody algorithms, in Joubert,
G.R., Leather, H., Parsons, M., Peters, F., Sawyer, M. eds, Advances in Parallel Computing 27: International Conference on Parallel
Computing (ParCo) 2015. Edinburgh, Scotland, IOS Press, Amsterdam, 421–430

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 12 / 60

PIC (without any computations here)

16 64 256 1024
cores

107

108

109
#

p
a
rt

ic
le

s/
s

Polaris, 2d, ppc=100, with flops

#particles=1.0e+07

#particles=1.0e+08

#particles=1.0e+09

Disclaimer: If we added computations, drops would not be that severe.

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 13 / 60

ADER-DG

3

1

2

Computations

Data flow

1. Predictor (non-linear iterate,
implicit space-time)

2. Riemann

3. Corrector

Charrier E. D., B. Hazelwood, Weinzierl T. Enclave Tasking for DG Methods on Dynamically Adaptive Meshes. arXiv:1801.08682
Dumbser M., Fambri F., Tavelli M., Bader M., Weinzierl T. Efficient implementation of ADER discontinuous Galerkin schemes for a scalable
hyperbolic PDE engine. arXiv:1808.03788
D.E. Charrier, B. Hazelwood, E. Tutlyaeva, M. Bader, M. Dumbser, A. Kudryavtsev, A. Moskovsky, T. Weinzierl: Studies on the energy and
deep memory behaviour of a cache-oblivious, task-based hyperbolic PDE solver. International Journal of High Performance Computing
Applications, 33(5), 973–986, 2019, arXiv:1810.03940.

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 14 / 60

Straightforward ADER-DG

1 4 8 12 16 24

1

4

8

12

16

24

cores

sp
ee
d
u
p

p3, regular
p4, regular
p5, regular
p6, regular
p7, regular
p8, regular
p3, adaptive
ideal
freq.-scaled ideal

Disclaimer: If we hadn’t used a fine-tuned, optimised code (minimal local iteration counts, aggressive optimisation,

elimination of temporary storage, . . .), scalability would be way better.

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 15 / 60

(Additive) Multigrid, BPX, . . .
with complex shift

R P

S

I

R

R
P

P

S

S

S

Level

1

2

3

4

I

I

1. Solve on fine level

2. Solve correction on coarser level

3. Prolongate correction and sum up
on fine level

C.D. Murray and T. Weinzierl: Lazy stencil integration in multigrid algorithms. 13th International Conference on Parallel Processing and
Applied Mathematics (PPAM 2019)
Weinzierl, M., Weinzierl, T. Quasi-matrix-free hybrid multigrid on dynamically adaptive Cartesian grids, ACM Transactions on Mathematical
Software (TOMS), 44(3), 32:1–32:44, 2018. arXiv:1607.00648
Reps, B., Weinzierl, T. Complex additive geometric multilevel solvers for Helmholtz equations on spacetrees. ACM Transactions on
Mathematical Software (TOMS), 44(1), 2:1–2:36, 2017. arXiv:1508.03954

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 16 / 60

(Additive) Multigrid, BPX, . . .

PETSc
Jacobi

BoxMG
Jacobi

PETSc
GAMG

BoxMG
V22

BoxMG
V22

FMG-type

PETSc
GAMG
1 cycle

BoxMG
V22

1 cycle

10 7

10 6

10 5

10 4

10 3

10 2
tim

e/
un

kn
ow

n
= (0, 1)2, hmin = 3 6

create grid & init (multiscale) operators
create grid
enumerate & init datastructures
assemble
solve
plot & smooth
plot

Disclaimer: If we hadn’t used totally dynamic AMR and started with a proper fine grid, we would have been faster.

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 17 / 60

Flavours of communication-avoiding

The root of all evil: We communicate.

Nuances of communication-avoiding programming techniques

Preserve exactly
(iteration count, operation no, ...)

Change

C
hange

algorithm
C

ha
ng

e
im

pl
em

en
ta

tio
n

Weekly (almost
always) preserve

Behaviour

“preserve exactly” = refactoring in software engineering [Fowler99]

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 18 / 60

This talk

This talk: A tour de force through some communication avoiding
techniques tailored to my demonstrators(*).

(*) With the potential to pay off in your projects, too.

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 19 / 60

Outline

Motivation

Demonstrators

Volume reduction

Single-touch implementations

Reduce synchronisation frequency

Homogenisation

Localisation

Wrap-up

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 20 / 60

Technique #1: Forget IEEE
(but preserve 64-bit semantics)

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 21 / 60

Massive memory

More particles

⇒ more accurate physics

⇒ higher memory footprint

⇒ memory-bound

Algebraic (Ritz-Galerkin+BoxMG) MG

⇒ pure geometric operators unstable

⇒ matrix-free + rediscretisation fails

⇒ massive assembly cost

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 22 / 60

Information density

I Particles per cell carry similar values
(often)

I Compute average attribute Ã(c) per
cell

I Encode data hierarchical
Â(p) = A(p)− Ã(c) per cell

I Compute on-the-fly how many bytes
per attribute are required such that

∀p ∈ c : |fbpa(Â(p))− Â(p)| ≤ ε

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 23 / 60

Reproducible science

vo id peano : : heap : : decompose (double value , char exponent [8] , long i n t mantissa [8] , double e r r o r [8]) {
i n t sh i f tExponent = 6 ;
const long i n t s ign = value < 0.0 ? −1 : 1 ;
i f (sign<0) {

value =−value ;
}
i n t in tegerExponent ;
const double s i g n i f i c a n d = std : : f rexp (value , &integerExponent) ;
f o r (i n t i =0; i <8; i ++) {

const double s h i f t M a n t i s s a = std : : pow(2 .0 , sh i f tExponent) ;
exponent [i] = s t a t i c c a s t<char>(integerExponent−sh i f tExponent) ;
mantissa [i] = s t a t i c c a s t<long i n t>

(s td : : round (s i g n i f i c a n d∗s h i f t M a n t i s s a)) ;
e r r o r [i] = s td : : abs (s td : : ldexp (mantissa [i] , exponent [i]) − value) ;
s td : : b i t s e t<64>∗ mant issaAsBi tset =

r e i n t e r p r e t c a s t<std : : b i t s e t<64>∗>(&(mantissa [i])) ;
i f (s ign<0) {

mant issaAsBi tset−>f l i p ((i +1)∗8−1) ;
}
sh i f tExponent +=8;

}
}

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 24 / 60

Non-IEEE for particle systems

no
comp

2

3

4

5

6

7

1
10

102

104

106

108

109ε=1e-12
ε=1e-8
ε=1e-4

I double values do often not carry enough significant bits compared to their
neighbours/averages/recomputed data

I Reduction of memory footprint by factor of four
Eckhardt, W., Glas, R., Korzh, D., Wallner, S., Weinzierl, T. (2016), On-the-fly memory compression for multibody algorithms, in Joubert,
G.R., Leather, H., Parsons, M., Peters, F., Sawyer, M. eds, Advances in Parallel Computing 27: International Conference on Parallel
Computing (ParCo) 2015. Edinburgh, Scotland, IOS Press, Amsterdam, 421–430

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 25 / 60

(Almost) Matrix-free, geometric-algebraic multigrid

I Operator stencil:
I Hold ε(x)/v(x) within vertex at x ∈ Ω
I Rediscretisation stencil Sgeom(ε)

cheap
I Determine Ŝ = S − Sgeom(ε)
I Store Ŝ in-between iterations
I Convert back to S prior to usage
⇒ no change of computational kernels
⇒ Ŝ holds few significant bits

I Inter-grid transfer operator stencils:
I Let Pd−linear be d-linear operator
I Determine P̂ = P − Pd−linear
I Determine R̂ = R − PT

d−linear
I Store P̂ and R̂ in-between iterations
I Convert back before we use operators
⇒ no change of computational kernels
⇒ P̂ and R̂ hold few significant bits

I Store fbpa(.) (for given accuracy εmf) if

|̂.− fbpa (̂.)| ≤ εmf

bpa: bytes per attribute

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 26 / 60

Memory footprint

h rediscr. εmf = 1e − 2 εmf = 1e − 4 εmf = 1e − 8
3−3 2.24e+03 2.24e+03/1.33e-02 2.24e+03/1.99e-02 2.24e+03/3.31e-02
3−4 1.36e+05 1.27e+05/5.68e-03 2.06e+05/8.35e-03 1.36e+05/1.38e-02
3−5 1.37e+05 2.97e+05/4.28e-03 4.57e+05/5.12e-03 1.37e+05/1.39e-02
3−6 2.09e+06 2.92e+06/2.83e-03 2.09e+06/4.39e-03 2.09e+06/7.29e-03
3−7 2.09e+06 4.80e+06/2.82e-03 2.09e+06/4.39e-03 2.09e+06/7.29e-03
3−3 1.08e+04 5.10e+03/1.68e-02 7.75e+03/2.53e-02 2.33e+04/4.10e-02
3−4 2.43e+04 2.41e+04/9.57e-03 2.43e+04/1.42e-02 2.43e+04/2.25e-02
3−5 3.43e+05 2.05e+05/1.20e-02 3.43e+05/1.64e-02 3.43e+05/2.67e-02
3−6 1.84e+07 1.78e+07/1.14e-02 1.60e+06/1.62e-02 1.84e+07/2.51e-02
3−7 1.45e+07 1.86e+07/1.14e-02 1.60e+06/1.62e-02 1.45e+07/2.56e-02

d = 2 Poisson equation (top) vs. “circular flow” material parameter (convection), i.e. worst-case setup (bottom);

memory footprint/relative footprint

I Effective memory footprint close to two doubles/dof (unknown plus rhs)
I Idea applies to hierarchical vs. nodal values

(other paper; further compression)

⇒ Algebraic multigrid with geometric multigrid’s memory footprint

Weinzierl, M., Weinzierl, T. Quasi-matrix-free hybrid multigrid on dynamically adaptive Cartesian grids, ACM Transactions on Mathematical

Software (TOMS), 44(3), 32:1–32:44, 2018. arXiv:1607.00648

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 27 / 60

Outline

Motivation

Demonstrators

Volume reduction

Single-touch implementations

Reduce synchronisation frequency

Homogenisation

Localisation

Wrap-up

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 28 / 60

Technique #2: Bring operations forward

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 29 / 60

HPC’s lingua franca: ADER-DG as task graph

Riemann

Riemann

Corrector

STP

Corrector

Observations:
I ADER-DG describes a task pattern
I Mesh instantiates task graph from pattern

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 30 / 60

Shifted tasking

Prediction (cell-local)

Riemann solve
(face-to-face)

Correction (cell-local)

Time step size comp.
(reduction)

Riemann solve
(face-to-face)

Time step size synchr.
(broadcast)

Prediction (cell-local)

For the time

Shifted algorithm:
I First read of face: trigger Riemann
I Enter cell: correct solution

(all 2d faces are read already)

I Trigger subsequent STP immediately

Observations:
I Shifted execution model

⇒ Bring tasks forward
I Only two (logical) kernels (cell+face)

⇒ Task-fusion
(incl. elimination of memory and memory accesses)

I One time step per sweep

⇒ Amortised single-touch semantics

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 31 / 60

Illustration

3

1

2

Computations

Data flow

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 32 / 60

Shifted tasking

Prediction (cell-local)

Riemann solve
(face-to-face)

Correction (cell-local)

Time step size comp.
(reduction)

Riemann solve
(face-to-face)

Time step size synchr.
(broadcast)

Prediction (cell-local)

For the time

Shifted algorithm:
I First read of face: trigger Riemann
I Enter cell: correct solution

(all 2d faces are read already)

I Trigger subsequent STP immediately

Observations:
I Shifted execution model

⇒ Bring tasks forward
I Only two (logical) kernels (cell+face)

⇒ Task-fusion
(incl. elimination of memory and memory accesses)

I One time step per sweep

⇒ Amortised single-touch semantics

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 33 / 60

Impact of fused timestepping

3 5 7
order

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

no
rm

al
ise

d
tim

e
/s

Riemann
Correction
Prediction
Fused

I High impact for low orders (Finite Volumes)
I Take care: there’s an easter egg here (potential bug) if you use this for non-linear

settings
Charrier E. D., Weinzierl T. Stop talking to me—a communication-avoiding ADER-DG realisation. arXiv:1801.08682
D.E. Charrier, B. Hazelwood, E. Tutlyaeva, M. Bader, M. Dumbser, A. Kudryavtsev, A. Moskovsky, T. Weinzierl: Studies on the energy and
deep memory behaviour of a cache-oblivious, task-based hyperbolic PDE solver. International Journal of High Performance Computing
Applications, 33(5), 973–986, 2019, arXiv:1810.03940.

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 34 / 60

Outline

Motivation

Demonstrators

Volume reduction

Single-touch implementations

Reduce synchronisation frequency

Homogenisation

Localisation

Wrap-up

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 35 / 60

Technique #3: Be optimistic

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 36 / 60

Lewy and Courant (C) Wikipedia

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 37 / 60

Revision: Shifted tasking

Prediction (cell-local)

Riemann solve
(face-to-face)

Correction (cell-local)

Time step size comp.
(reduction)

Riemann solve
(face-to-face)

Time step size synchr.
(broadcast)

Prediction (cell-local)

Shifted algorithm:
I First read of face: trigger Riemann
I Enter cell: correct solution

(all 2d faces are read already)

I Trigger subsequent STP immediately

Observations:
I CFL/λmax condition has to be known
I h may not drop suddenly
I Both are global quantities (global time

stepping)

⇒ Maybe not known when we fire STP

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 38 / 60

Be optimistic and anarchic

I Intermix compute phases over different grid entities
I Bring STP calculations forward
I Fuse correction with STP tasks
I Be optimistic (and eliminate synchronisation):

I Work with estimate ∆t (n+1)
est

I Determine ∆t (n+1)
adm on-the-fly

I If admissible ∆t (n+1)
adm > ∆t (n+1)

est use ∆t (n+1)
est ← 0.5(∆t (n+1)

adm + ∆t (n+1)
est)

I If ∆t (n+1)
adm < ∆t (n+1)

est reset ∆t (n+1)
est ← 0.9 ∆t (n+1)

adm and rerun

⇒ Limiter, AMR, time step decreases might make approach fall back to two-sweep
paradigm

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 39 / 60

Some results (not really)

1 4 8 1216 24 32 48 64
cores

5000

10000

15000

20000

ce
ll

up
da

te
ra

te
/s
−

1

p3-fused
p5-fused

p7-fused
p3-nonfused

I Failed guesses very infrequently
I Numerical dispersion negligible so far (weekly preserving semantics)

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 40 / 60

Outline

Motivation

Demonstrators

Volume reduction

Single-touch implementations

Reduce synchronisation frequency

Homogenisation

Localisation

Wrap-up

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 41 / 60

Technique #4: Intermix data-access intesive and compute-intensive tasks

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 42 / 60

Challenge

Riemann

Riemann

Corrector

STP

Corrector

Shifting + optimism with classic domain decomposition help . . .

+ Memory- and compute-intense tasks take turns

- AMR (memory intense) tends to happen towards end of sweep

- Riemann solves still might run concurrently

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 43 / 60

Enclave tasking—inspired by Ghattas et al.

Riemann

Riemann

Corrector

STP

Corrector

I Mark all cells along MPI boundary and resolution transitions⇒ skeleton grid
(those are involved in MPI and might refine/coarsen; this is an optimistic assumption)

⇒ reordering challenging
I Give up on idea to run Riemann solves parallel (weakly)

⇒ bandwidth-bound
(cheap and skeleton operations done immediately and close-to sequentially)

I Make remaining cells (enclave) give us the scaling
(job stealing makes brings in idling cores)

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 44 / 60

Ingredient: Prioritise
and re-introduce a second grid traversal

Primary sweep:
I Per face

I wait for adjacent STPs to finish
I Riemann solves
I restrict image along resolution

transitions
I Per cell

I Corrector
I Dynamic adaptivity, limiter reruns, . . .
I determine skeletons on-the-fly

I Spawn STP
I on skeleton: high priority
I on enclaves: low priority (background)

Secondary sweep:
I Ignore enclaves (partial sweep)
I Per skeleton cell: wait for STP
I Trigger MPI exchange
I Interpolate along AMR transitions for

next Riemann solve

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 45 / 60

Ingredient: Prioritise
and re-introduce a second grid traversal

Primary sweep:
I Per face

I wait for adjacent STPs to finish
I Riemann solves
I restrict image along resolution

transitions
I Per cell

I Corrector
I Dynamic adaptivity, limiter reruns, . . .
I determine skeletons on-the-fly

I Spawn STP
I on skeleton: high priority
I on enclaves: low priority (background)

Secondary sweep:
I Ignore enclaves (partial sweep)
I Per skeleton cell: wait for STP
I Trigger MPI exchange
I Interpolate along AMR transitions for

next Riemann solve

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 45 / 60

Ingredient: Prioritise
and re-introduce a second grid traversal

Primary sweep:
I Per face

I wait for adjacent STPs to finish
I Riemann solves
I restrict image along resolution

transitions
I Per cell

I Corrector
I Dynamic adaptivity, limiter reruns, . . .
I determine skeletons on-the-fly

I Spawn STP
I on skeleton: high priority
I on enclaves: low priority (background)

Secondary sweep:
I Ignore enclaves (partial sweep)
I Per skeleton cell: wait for STP
I Trigger MPI exchange
I Interpolate along AMR transitions for

next Riemann solve

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 46 / 60

Enclave implications

Parallel
boundary

Refinement
boundary

Enclave
cell

Skeleton
cell

Riemann Riemann

I Low intensity tasks trickle through system
(homogenise arithmetic load/avoid memory access bursts)

I Coarsening & refinement accompanied by background/enclave STPs
(memory allocation and initialisation to not throttle everybody else)

I STPs yielding MPI messages ran before majority of (enclave) tasks
(more time to overlap messaging and processing)

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 47 / 60

Technique #5: Overlap data movements and computations

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 48 / 60

Low intensity jobs trickle through system and
communication is hidden

1 2 3 6 12 24 48

1

2

3

6

12

24

48

Cores

S
p
ee
d
u
p

p = 3, priorities
p = 5, priorities
p = 7, priorities
p = 3, pfors
linear

100 101 102 103 104
105

106

107

108

109

1010

Cores

D
O

F
U

p
d
a
te

s
/

s

253

253 (∆` = 1)

253 (∆` = 2)

793

793 (∆` = 1)

2433

linear trend

Charrier E. D., B. Hazelwood, Weinzierl T. Enclave Tasking for DG Methods on Dynamically Adaptive Meshes. arXiv:1801.08682
(submitted)

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 49 / 60

Outline

Motivation

Demonstrators

Volume reduction

Single-touch implementations

Reduce synchronisation frequency

Homogenisation

Localisation

Wrap-up

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 50 / 60

Technique #6: Exploit sparsity of communication graph

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 51 / 60

The particle code

Single touch through shifts
(postpone update)
I Bookmark position update

(do not apply)

I Apply position update as preamble to
next step
(first touch)

I Update grid-particle association in
preamble, too

⇒ simple iff particles travel at most one
cell per time step

Lift-n-drop mechanism
I Use cascade of grids (octree)
I Particles on finest level for

computation
I Otherwise on level such that they drift

at most one level

⇒ works but . . .

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 52 / 60

The particle code

16 64 256 1024
cores

107

108

109

#
p
a
rt

ic
le

s/
s

Polaris, 2d, ppc=100, with flops

#particles=1.0e+07

#particles=1.0e+08

#particles=1.0e+09

Horizontal data exchange
I Along multiscale domain boundaries

(non-blocking MPI hiding behind computation)

I Very fast particles are lifted
aggressively

I Non-neighbour MPI ranks involved
(global sort)

⇒ Latency-sensitive

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 53 / 60

Predict data flow

Vertical data flow:
I Max velocity vmax (c) per cell c ∈ T
I Extrapolate velocity updates (fine grid)
I Analysed tree grammar

vmax (c) =

 maxp∈c |v(p)| for leaves
maxc′ vmax (c′) otherwise

∀ c′ vchild of c

I Next traversal:
I Particle p drops into domain

vmax ← max(vmax , |v(p)|)
I vmax ≤ h/∆t : no tunnelling possible

and likely not to happen either
⇒ skip reduction for these rank pairs
I Security factor for extrapolation

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 54 / 60

reduction-avoiding Particle-In-Tree

32 128 512 2048 9102
cores

106

107

108

109

1010

#
p
a
rt

ic
le

s/
s

SuperMUC, raPIDT,2d

1.0e+09, ∆t=1.0e-04

1.0e+09, ∆t=1.0e-05

1.0e+09, ∆t=1.0e-06

I Triangle: 2.0 · 108 particles; Diamond: 4.0 · 109 particles; Star: 1.0 · 1010 particles
I Colours encode time step sizes

Weinzierl, T., Verleye, B., Henri, P., Roose, D. Two Particle-in-Grid realizations on Spacetrees. Parallel Computing 52, 42–64, 2016.
arXiv:1508.02435

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 55 / 60

Outline

Motivation

Demonstrators

Volume reduction

Single-touch implementations

Reduce synchronisation frequency

Homogenisation

Localisation

Wrap-up

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 56 / 60

My notion of “communication-avoiding”

Techniques presented:
1. reduction of data volume (below-IEEE)
2. reduction of data access frequency (single-touch)
3. reduction of synchronisation (optimism)
4. homogenisation of data access (enclave tasking)
5. data access hiding (enclave tasking)
6. localisation of data transfer (reduction grammar)

Communication avoiding 7→ Communication-flaw-avoiding

Properties:
I Generalised interpretation of “communication-avoiding”
I Pay-off through combination of techniques
I One technique often tickboxes multiple criteria
I Applies to both message exchange and on-chip data access
I Might still be incomplete

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 57 / 60

Context

H. Sutter: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software, 2005 (left)

D. Keyes: SCaLeS Report, Vol. 2, 2004 (right)

I I don’t know the next big algorithmic thing
I Some ideas had multifaceted impact on various disciplines

I Think multiresolution
I Increase smoothness locally, give up on global smoothness

I Time might be right for similar impact of communication avoiding techniques

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 58 / 60

Famous last words

It is all open source (www.peano-framework.org).
Follow us on Twitter (@hpcsoftware).

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 59 / 60

www.peano-framework.org

Support & Grants

I Peano (www.peano-framework.org) has been developed for more than 10 years under various grants made
by Technische Universität München (TUM), KAUST, German Research Foundation (DFG), Durham University,
and many more.

I ExaHyPE (www.exahype.eu) has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 671698.

I The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for
funding this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz
Supercomputing Centre (LRZ, www.lrz.de).

I Experiments were made possible through Durham’s supercomputer Hamilton.

I We appreciate early-adopters access to Intel Xeon Phi 7200 (codenamed KNL) family processors through the
RSC Group.

Tobias Weinzierl: Communication-avoiding programming patterns— PPAM 2019 60 / 60

www.peano-framework.org
www.exahype.eu
www.gauss-centre.eu
www.lrz.de

	Motivation
	Demonstrators
	Volume reduction
	Single-touch implementations
	Reduce synchronisation frequency
	Homogenisation
	Localisation
	Wrap-up

