
Mary	Hall	
September	11,	2019	

Protonu	Basu	(Facebook),	Tuowen	Zhao,	Sam	Williams,	
Brian	Van	Straalen,	Lenny	Oliker,	Phil	Colella,	Hans	

Johansen	

Stencils,	Bricks	and	Geometric	Multigrid	

LLVM	and	Polly	Optimization	
Michael	Kruse,	Hal	Finkel,	Vinu	Sreenivasan	

Autotuning	Search	and	Pragma	Autotuner	
Prasanna	Balaprakash,	Paul	Hovland,	Vinu	Sreenivasan,	

Rajath	Javali	

This	research	was	supported	by	the	Exascale	Computing	Project	(17-SC-20-SC),	a	joint	project	of	the	U.S.	
Department	of	Energy’s	Office	of	Science	and	National	Nuclear	Security	Administration,	responsible	for	
delivering	a	capable	exascale	ecosystem,	including	software,	applications,	and	hardware	technology,	to	
support	the	nation’s	exascale	computing	imperative.	
This	research	used	resources	in	Lawrence	Berkeley	National	Laboratory	and	the	National	Energy	Research	
Scientific	Computing	Center,	which	are	supported	by	the	U.S.	Department	of	Energy	Office	of	Science’s	
Advanced	Scientific	Computing	Research	program	under	contract	number	DE-AC02-05CH11231.	

/* Laplacian 7-point Variable-Coefficient Stencil */
for (k=0; k<N; k++)
 for (j=0; j<N; j++)
 for (i=0; i<N; i++

 temp[k][j][i] = b * h2inv * (
 beta_i[k][j][i+1] * (phi[k][j][i+1] – phi[k][j][i])

 -beta_i[k][j][i] * (phi[k][j][i] – phi[k][j][i-1])
 +beta_j[k][j+1][i] * (phi[k][j+1][i] – phi[k][j][i])
 -beta_j[k][j][i] * (phi[k][j][i] – phi[k][j-1][i])
 +beta_k[k+1][j][i] * (phi[k+1][j][i] – phi[k][j][i])
 -beta_k[k][j][i] * (phi[k][j][i] – phi[k-1][j][i]));

/* Helmholz */
for (k=0; k<N; k++)
 for (j=0; j<N; j++)
 for (i=0; i<N; i++)

 temp[k][j][i] = a * alpha[k][j][i] * phi[k][j][i] –
 temp[k][j][i];

/* Gauss-Seidel Red Black Update */
for (k=0; k<N; k++)
 for (j=0; j<N; j++)
 for (i=0; i<N; i++){

 if ((i+j+k+color)%2 == 0)
 phi[k][j][i] = phi[k][j][i] – lambda[k][j][i] *

 (temp[k][j][i] – rhs[k][j][i]);}

Code	A:	miniGMG	baseline	smooth	operator	
					approximately	13	lines	of	code	

Code	B:	miniGMG	optimized	smooth	operator	
					approximately	170	lines	of	code	

Which	version	would	you	prefer	to	write?	
Prefetch	

Data	staged	in	registers/buffers	

AVX	SIMD	intrinsics	

Memory	Hierarchy	

Parallelism	

Ghost	zones:		
Tradeoff	computation	for	communication	

Spin	locks	in	OpenMP	

Nested	OpenMP	and	MPI	

Parallel	Wavefronts:		
Reduce	sweeps	over	3D	grid	

And	now	GPU	code?	

Code	C:	miniGMG	optimized	smooth	operator	for	GPU,	308	lines	of	code	for	just	kernel	

Programmer	writes	

Code	A	

Programming	system	derives	

Code	B	(CPU)	

Code	C	(GPU)	

Also,	Codes	D,	E	and	F….	

#3:	TaihuLight,	Sunway		
#4:	Tianhe-2,		Intel	Xeon	Phis	

#1:	Summit,	IBM	Power9+V100	GPUs		

#8:	ABCI	
Intel	Xeon	Gold	
And	V100	GPUs		

#6:	Piz	Daint,	
Intel	Xeon+P100	
GPUs								

Can	the	same	program	perform	well	on	
diverse	supercomputing	platforms?	(e.g.,	
Top	500	list,	top500.org)	

Fugaku	(Riken),	ARM	+	custom	optimizations	 Aurora,	Intel	Xeon	+	Intel	X	Compute	

Frontier,	AMD	EPYC	CPU	+	AMD	GPU	

Slide	source:	Kathy	Yelick,	UC	Berkeley,	More	Data,	More	Science	and...	!	Moore’s	Law,	2015.		

•  Extended	compiler	transformation	and	code	
generation	framework	with	domain-specific	
specialization	(supports	C-like	C++)	
•  Target	is	loop-based	scientific	applications	and	related	
tensor	computations	such	as	CNNs	

•  Composable	transformations	

•  Optimization	strategy	can	be	specified	or	derived	
with	transformation	recipes	
•  Also	optimization	parameters	exposed	
•  Separates	code	from	mapping!	

•  Autotuning	
•  Systematic	exploration	of	alternate	transformation	
recipes	and	their	optimization	parameter	values	

•  Search	technology	to	prune	combinatorial	space		

for	(i=0;i<N;i++)	{	
				for	(j=1;j<M;j++)	{	
S0:				a[i][j]	=	b[j]	–		
																							a[i][j-1];	
I	=	{[i,j]	|	0<=i<N	∧		
								1<=j<=M}								

/* jacobi_box_4_64.py, 27-pt stencil, 643 box size */
from	chill	import	*	

#select	which	computation	to	optimize	
source('jacobi_box_4_64.c')	
procedure('smooth_box_4_64')	
loop(0)	
original()	#	fuse	wherever	possible	

#create	a	parallel	wavefront	
skew([0,1,2,3,4,5],2,[2,1])	
permute([2,1,3,4])	

#partial	sum	for	high	order	stencils	and	fuse	result	
distribute([0,1,2,3,4,5],2)	
stencil_temp(0)		
stencil_temp(5)	
fuse([2,3,4,5,6,7,8,9],1)	
fuse([2,3,4,5,6,7,8,9],2)	
fuse([2,3,4,5,6,7,8,9],3)	
fuse([2,3,4,5,6,7,8,9],4)	

/* gsrb.lua, variable coefficient GSRB, 643 box size */
init("gsrb_mod.cu",	"gsrb",0,0)	
dofile("cudaize.lua”)	#	custom	commands	in	lua	

#	set	up	parallel	decomposition,	adjust	via	autotuning	
TI=32	TJ=4	TK=64	TZ=64	

tile_by_index(0,	{"box","k","j",	"i"},{TZ,TK,	TJ,	TI},{l1_control="bb",	
l2_control="kk",	l3_control="jj",	l4_control="ii"},
{"bb","box","kk","k","jj","j","ii","i"})	

cudaize(0,	"kernel_GPU",{_temp=N*N*N*N,_beta_i=N*N*N*N,	
_phi=N*N*N*N},{block={"ii","jj","box"},	thread={"i","j"}},{})	

vectorize(x_inner,	factor),	equivalent	to	
gradient.split(x,	x,	x_inner,	4);																		
gradient.vectorize(x_inner);	
gradient.parallel(tile_index);	
gradient.split(x,	x_outer,	x_inner,	2);	
gradient.unroll(x_inner),	equivalent	to	
gradient.unroll(x,	2);	
gradient.tile(x,	y,	x_outer,	y_outer,	x_inner,	
y_inner,	4,	4);		
gradient.reorder(y,	x);	//	similar	to	transpose	
gradient.split(x,	x_outer,	x_inner,	2)	
fuse(x,	y,	fused)	

!  miniGMG	w/CHiLL	
•  Fused	operations	
•  Communication-avoiding	

wavefront	
•  Parallelized	(OpenMP)	

!  Autotuning	finds	the	best	
implementation	for	each	box	size	
•  wavefront	depth		
•  nested	OpenMP	configuration	
•  inter-thread	synchronization	

(barrier	vs.	point-to-point)	
!  For	fine	grids	(large	arrays)	CHiLL	

attains	nearly	a	4.5x	speedup	over	
baseline	

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

3.0x

3.5x

4.0x

4.5x

5.0x

64^3 32^3 16^3 8^3 4^3
S

p
e

e
d

u
p

 o
v

e
r

B
a

s
e

li
n

e
 S

m
o

o
th

e
r

Box Size (== Level in the V-Cycle)

GSRB Smooth (Edison)

CHiLL generated

Manually Tuned

Baseline

Communication	Avoiding:		
Sometimes	Code	A	Beats	Code	B!	

Basu	et	al.,	HiPC	2013,	IPDPS	2015.	

16	

5.224148

4.861889
4.774941

0

2

4

6

8

10

12

T
im

e
 (

se
co

n
d

s)

2D Thread Blocks <TX,TY>

GSRB Smooth on 64^3 boxes

CUDA-CHiLL

Handtuned

Handtuned-VL

!  CHiLL	can	obviate	the	need	for	
architecture-specific	programming	
models	like	CUDA	
•  CUDA-CHiLL	took	the	sequential	

GSRB	implementation	(.c)	and	
generated	CUDA	that	runs	on	
NVIDIA	GPUs	

•  CUDA-CHiLL	autotuned	over	the	
thread	block	sizes	and	is	
ultimately	2%	faster	than	the	
hand-optimized	minigmg-cuda	
(Code	C)	

•  Adaptable	to	new	GPU	
generations	

Retargetable	and	Performance	Portable:	
Optimized	Code	A	can	beat	Code	C!	

Basu	et	al.,	PARCO	2017.	

Brick	Data	Layout	+	Code	Generator	
•  A	brick	is	a	4x4x4	mini	domain	without	
a	ghost	zone	

•  Application	of	a	stencil	reaches	into	
other	bricks	(affinity	important)	

•  Implemented	with	contiguous	storage	
and	adjacency	lists		

• Performance	portability	
•  Automation	of	architecture-specific	code	generation	
•  Same	abstraction,	but	different	low-level	instructions	
and	“vector”	widths	

• Data	movement	
•  Contiguous	storage	of	subdomain	reduces	overhead	of	
automatic	data	movement	(prefetch,	TLB,	cache)		

•  Adjustable	brick	size	adapts	to	node	architecture	limits	
•  Indirection	to	represent	neighbor	lists	gives	freedom	to	
adapt	co-located	bricks	to	architecture	
•  (Ongoing)	And	to	adapt	layout	to	optimize	communication	

• 	Bricks	achieve	best	performance	for	higher-order	stencils,	up	to	5X!	
• 	Always	profitable	on	P100	

• 	Bricks	achieve	performance	close	to	memory	bandwidth	limit	
• 	125pt	stencil	approaches	compute	limit,	has	non-float	operations	

Zhao	et	al.,	PP3HPC	2018.	
Zhao	et	al.,	SC19.	

• Bricks	
• What	brick	size?	
•  How	many	bricks	per	core?		Per	node?	

• Program	transformations	
• Which	transformations	to	use?	
•  Parameters	to	optimizations,	such	as	tile	size?	

• Other	things	to	tune	
•  Pragmas,	e.g.,	OpenMP	
•  Application	parameters,	e.g.,	in	a	library	like	SuperLU	

•  Search	Using	Random	Forest	(SuRF)	for	autotuning	
search	(may	not	involve	compiler)	

Clang	

LLVM	

Polly	

OpenMP	

Polyhedral	compiler	in	LLVM	

Pragma	
Autotuner	
(using	
SuRF)	

#pragma	…	

pragma	metadata		

/* Polly example */
#pragma	clang	loop	unroll(4)	
for	(int	i	=	0;	i	<	n;	i+=1)		Statement(i);	

/* OpenMP example */
#pragma	omp	parallel	loop	
for	(int	i	=	0;	i	<	n;	i+=1)		Statement(i);	

/* OpenMP example */
#pragma	omp	target	distribute	simd	
for	(int	i	=	0;	i	<	n;	i+=1)		Statement(i);	

•  Overhead	
•  Tuning	search	can	be	expensive	
•  Off-line	tuning	expensive,	programmer	burden	
•  Specifying	search	space,	transformations	
•  Selection	and	configuration	of	algorithms	

•  Scope	
•  Tuning	must	be	repeated	for	new	execution	contexts	
•  Exascale	resources	vary	during	execution,	platform	may	not	be	
available	for	training	

•  Economies	of	data	scale:	Learning	based	on	a	community’s	code	
•  Other	programmer	concerns	

•  Correctness	concerns	with	dynamically-changing	code	
•  Long-term	tool	availability	

Autotuning	in	High-Performance	Computing	Applications,	Balaprakash,	Dongarra,	Gamblin,	
Hall,	Hollingsworth,	Norris,	Vuduc,	Special	Issue	of	Proceedings	of	the	IEEE,	Nov.	2018.	

•  The	plethora	of	architecture	technologies	will	make	
programming	future	supercomputers	even	more	of	
a	nightmare	

• Programming	system	technology	is	desperately	
needed	to	address	programmer	productivity	
•  Separating	specification	from	architecture	mapping	
•  Architecture-specific	code	generation	
•  Autotuning	

• HOW	TO	BUILD	THIS	TECHNOLOGY???	

Facebook	 Amazon	

Challenges	and	opportunities:	
- 	Domain-specific		
- 	Many	frontends		
- 	Many	target	architectures	
- 	Abundant	parallelism	and	

	data	reuse	
- 	Must	scale	to	large	problems	

http://code.fb.com/ml-applications/glow-a-community-driven-approach-to-ai-infrastructure/	
http://aws.amazon.com/blogs/machine-learning/introducing-nnvm-compiler-a-new-open-end-to-end-compiler-for-ai-frameworks/	

	for	(n=0;	n<N;	n++)	{	//	minibatch	size							
			for	(k=0;	k<K;	k	++)	{	//	output	feature	map									
					for	(c=0;	c<C;	c	++)	{	//	input	feature	map																
							for	(p=0;	p<P;	p	++)	{	//	output	height													
									ij	=	p	*	u;	//	input	height													
									for	(q	=0;	q<Q;	q	++)	{	//	output	width															
											ii	=	q	*	v;	//	input	width															
											for	(r=0;	r<R;	r	++)	{	//	filter	height																	
													for	(s	=0;	s<	S;	s	++)	{//	filter	width																									
															output_seq[n][k][p][q]	+=		
																							input	[n][c][ij+r][ii+s]	*	weight[k][c][r][s];													
}	}	}	}	}	}	}	

27	

