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/* Laplacian 7-point Variable-Coefficient Stencil */ 
for (k=0; k<N; k++) 
    for (j=0; j<N; j++)  
       for (i=0; i<N; i++ 

 temp[k][j][i] = b * h2inv * ( 
   beta_i[k][j][i+1] * ( phi[k][j][i+1] – phi[k][j][i] ) 

                  -beta_i[k][j][i] * ( phi[k][j][i] – phi[k][j][i-1] ) 
 +beta_j[k][j+1][i] * ( phi[k][j+1][i] – phi[k][j][i] ) 
 -beta_j[k][j][i] * ( phi[k][j][i] – phi[k][j-1][i] ) 
 +beta_k[k+1][j][i] * ( phi[k+1][j][i] – phi[k][j][i] ) 
 -beta_k[k][j][i] * ( phi[k][j][i] – phi[k-1][j][i] ) ); 

/* Helmholz */ 
for (k=0; k<N; k++) 
    for (j=0; j<N; j++)  
       for (i=0; i<N; i++) 

 temp[k][j][i] = a * alpha[k][j][i] * phi[k][j][i] –              
                                  temp[k][j][i]; 

/* Gauss-Seidel Red Black Update */ 
for (k=0; k<N; k++) 
    for (j=0; j<N; j++)  
       for (i=0; i<N; i++){ 

 if ((i+j+k+color)%2 == 0 ) 
 phi[k][j][i] = phi[k][j][i] – lambda[k][j][i] * 

             (temp[k][j][i] – rhs[k][j][i]);} 

Code	A:	miniGMG	baseline	smooth	operator	
					approximately	13	lines	of	code	

Code	B:	miniGMG	optimized	smooth	operator	
					approximately	170	lines	of	code	

Which	version	would	you	prefer	to	write?	
Prefetch	

Data	staged	in	registers/buffers	

AVX	SIMD	intrinsics	

Memory	Hierarchy	

Parallelism	

Ghost	zones:		
Tradeoff	computation	for	communication	

Spin	locks	in	OpenMP	

Nested	OpenMP	and	MPI	

Parallel	Wavefronts:		
Reduce	sweeps	over	3D	grid	



And	now	GPU	code?	

Code	C:	miniGMG	optimized	smooth	operator	for	GPU,	308	lines	of	code	for	just	kernel	



Programmer	writes	

Code	A	

Programming	system	derives	

Code	B	(CPU)	

Code	C	(GPU)	

Also,	Codes	D,	E	and	F….	



#3:	TaihuLight,	Sunway		
#4:	Tianhe-2,		Intel	Xeon	Phis	

#1:	Summit,	IBM	Power9+V100	GPUs		

#8:	ABCI	
Intel	Xeon	Gold	
And	V100	GPUs		

#6:	Piz	Daint,	
Intel	Xeon+P100	
GPUs								

Can	the	same	program	perform	well	on	
diverse	supercomputing	platforms?	(e.g.,	
Top	500	list,	top500.org)	



Fugaku	(Riken),	ARM	+	custom	optimizations	 Aurora,	Intel	Xeon	+	Intel	X	Compute	

Frontier,	AMD	EPYC	CPU	+	AMD	GPU	



Slide	source:	Kathy	Yelick,	UC	Berkeley,	More	Data,	More	Science	and...	!	Moore’s	Law,	2015.		









•  Extended	compiler	transformation	and	code	
generation	framework	with	domain-specific	
specialization	(supports	C-like	C++)	
•  Target	is	loop-based	scientific	applications	and	related	
tensor	computations	such	as	CNNs	

•  Composable	transformations	

•  Optimization	strategy	can	be	specified	or	derived	
with	transformation	recipes	
•  Also	optimization	parameters	exposed	
•  Separates	code	from	mapping!	

•  Autotuning	
•  Systematic	exploration	of	alternate	transformation	
recipes	and	their	optimization	parameter	values	

•  Search	technology	to	prune	combinatorial	space		

for	(i=0;i<N;i++)	{	
				for	(j=1;j<M;j++)	{	
S0:				a[i][j]	=	b[j]	–		
																							a[i][j-1];	
I	=	{[i,j]	|	0<=i<N	∧		
								1<=j<=M}								



/* jacobi_box_4_64.py, 27-pt stencil, 643 box size */ 
from	chill	import	*	

#select	which	computation	to	optimize	
source('jacobi_box_4_64.c')	
procedure('smooth_box_4_64')	
loop(0)	
original()	#	fuse	wherever	possible	

#create	a	parallel	wavefront	
skew([0,1,2,3,4,5],2,[2,1])	
permute([2,1,3,4])	

#partial	sum	for	high	order	stencils	and	fuse	result	
distribute([0,1,2,3,4,5],2)	
stencil_temp(0)		
stencil_temp(5)	
fuse([2,3,4,5,6,7,8,9],1)	
fuse([2,3,4,5,6,7,8,9],2)	
fuse([2,3,4,5,6,7,8,9],3)	
fuse([2,3,4,5,6,7,8,9],4)	

/* gsrb.lua, variable coefficient GSRB, 643 box size */ 
init("gsrb_mod.cu",	"gsrb",0,0)	
dofile("cudaize.lua”)	#	custom	commands	in	lua	

#	set	up	parallel	decomposition,	adjust	via	autotuning	
TI=32	TJ=4	TK=64	TZ=64	

tile_by_index(0,	{"box","k","j",	"i"},{TZ,TK,	TJ,	TI},{l1_control="bb",	
l2_control="kk",	l3_control="jj",	l4_control="ii"},
{"bb","box","kk","k","jj","j","ii","i"})	

cudaize(0,	"kernel_GPU",{_temp=N*N*N*N,_beta_i=N*N*N*N,	
_phi=N*N*N*N},{block={"ii","jj","box"},	thread={"i","j"}},{})	



vectorize(x_inner,	factor),	equivalent	to	
gradient.split(x,	x,	x_inner,	4);																		
gradient.vectorize(x_inner);	
gradient.parallel(tile_index);	
gradient.split(x,	x_outer,	x_inner,	2);	
gradient.unroll(x_inner),	equivalent	to	
gradient.unroll(x,	2);	
gradient.tile(x,	y,	x_outer,	y_outer,	x_inner,	
y_inner,	4,	4);		
gradient.reorder(y,	x);	//	similar	to	transpose	
gradient.split(x,	x_outer,	x_inner,	2)	
fuse(x,	y,	fused)	



!  miniGMG	w/CHiLL	
•  Fused	operations	
•  Communication-avoiding	

wavefront	
•  Parallelized	(OpenMP)	

!  Autotuning	finds	the	best	
implementation	for	each	box	size	
•  wavefront	depth		
•  nested	OpenMP	configuration	
•  inter-thread	synchronization	

(barrier	vs.	point-to-point)	
!  For	fine	grids	(large	arrays)	CHiLL	

attains	nearly	a	4.5x	speedup	over	
baseline	
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Communication	Avoiding:		
Sometimes	Code	A	Beats	Code	B!	

Basu	et	al.,	HiPC	2013,	IPDPS	2015.	
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CUDA-CHiLL

Handtuned

Handtuned-VL

!  CHiLL	can	obviate	the	need	for	
architecture-specific	programming	
models	like	CUDA	
•  CUDA-CHiLL	took	the	sequential	

GSRB	implementation	(.c)	and	
generated	CUDA	that	runs	on	
NVIDIA	GPUs	

•  CUDA-CHiLL	autotuned	over	the	
thread	block	sizes	and	is	
ultimately	2%	faster	than	the	
hand-optimized	minigmg-cuda	
(Code	C)	

•  Adaptable	to	new	GPU	
generations	

Retargetable	and	Performance	Portable:	
Optimized	Code	A	can	beat	Code	C!	

Basu	et	al.,	PARCO	2017.	



Brick	Data	Layout	+	Code	Generator	
•  A	brick	is	a	4x4x4	mini	domain	without	
a	ghost	zone	

•  Application	of	a	stencil	reaches	into	
other	bricks	(affinity	important)	

•  Implemented	with	contiguous	storage	
and	adjacency	lists		





• Performance	portability	
•  Automation	of	architecture-specific	code	generation	
•  Same	abstraction,	but	different	low-level	instructions	
and	“vector”	widths	

• Data	movement	
•  Contiguous	storage	of	subdomain	reduces	overhead	of	
automatic	data	movement	(prefetch,	TLB,	cache)		

•  Adjustable	brick	size	adapts	to	node	architecture	limits	
•  Indirection	to	represent	neighbor	lists	gives	freedom	to	
adapt	co-located	bricks	to	architecture	
•  (Ongoing)	And	to	adapt	layout	to	optimize	communication	



• 	Bricks	achieve	best	performance	for	higher-order	stencils,	up	to	5X!	
• 	Always	profitable	on	P100	



• 	Bricks	achieve	performance	close	to	memory	bandwidth	limit	
• 	125pt	stencil	approaches	compute	limit,	has	non-float	operations	

Zhao	et	al.,	PP3HPC	2018.	
Zhao	et	al.,	SC19.	



• Bricks	
• What	brick	size?	
•  How	many	bricks	per	core?		Per	node?	

• Program	transformations	
• Which	transformations	to	use?	
•  Parameters	to	optimizations,	such	as	tile	size?	

• Other	things	to	tune	
•  Pragmas,	e.g.,	OpenMP	
•  Application	parameters,	e.g.,	in	a	library	like	SuperLU	



•  Search	Using	Random	Forest	(SuRF)	for	autotuning	
search	(may	not	involve	compiler)	

Clang	

LLVM	

Polly	

OpenMP	

Polyhedral	compiler	in	LLVM	

Pragma	
Autotuner	
(using	
SuRF)	

#pragma	…	

pragma	metadata		

/* Polly example */ 
#pragma	clang	loop	unroll(4)	
for	(int	i	=	0;	i	<	n;	i+=1)		Statement(i);	

/* OpenMP example */ 
#pragma	omp	parallel	loop	
for	(int	i	=	0;	i	<	n;	i+=1)		Statement(i);	

/* OpenMP example */ 
#pragma	omp	target	distribute	simd	
for	(int	i	=	0;	i	<	n;	i+=1)		Statement(i);	



•  Overhead	
•  Tuning	search	can	be	expensive	
•  Off-line	tuning	expensive,	programmer	burden	
•  Specifying	search	space,	transformations	
•  Selection	and	configuration	of	algorithms	

•  Scope	
•  Tuning	must	be	repeated	for	new	execution	contexts	
•  Exascale	resources	vary	during	execution,	platform	may	not	be	
available	for	training	

•  Economies	of	data	scale:	Learning	based	on	a	community’s	code	
•  Other	programmer	concerns	

•  Correctness	concerns	with	dynamically-changing	code	
•  Long-term	tool	availability	

Autotuning	in	High-Performance	Computing	Applications,	Balaprakash,	Dongarra,	Gamblin,	
Hall,	Hollingsworth,	Norris,	Vuduc,	Special	Issue	of	Proceedings	of	the	IEEE,	Nov.	2018.	



•  The	plethora	of	architecture	technologies	will	make	
programming	future	supercomputers	even	more	of	
a	nightmare	

• Programming	system	technology	is	desperately	
needed	to	address	programmer	productivity	
•  Separating	specification	from	architecture	mapping	
•  Architecture-specific	code	generation	
•  Autotuning	

• HOW	TO	BUILD	THIS	TECHNOLOGY???	



Facebook	 Amazon	

Challenges	and	opportunities:	
- 	Domain-specific		
- 	Many	frontends		
- 	Many	target	architectures	
- 	Abundant	parallelism	and	

	data	reuse	
- 	Must	scale	to	large	problems	

http://code.fb.com/ml-applications/glow-a-community-driven-approach-to-ai-infrastructure/	
http://aws.amazon.com/blogs/machine-learning/introducing-nnvm-compiler-a-new-open-end-to-end-compiler-for-ai-frameworks/	



	for	(n=0;	n<N;	n++)	{	//	minibatch	size							
			for	(k=0;	k<K;	k	++)	{	//	output	feature	map									
					for	(c=0;	c<C;	c	++)	{	//	input	feature	map																
							for	(p=0;	p<P;	p	++)	{	//	output	height													
									ij	=	p	*	u;	//	input	height													
									for	(q	=0;	q<Q;	q	++)	{	//	output	width															
											ii	=	q	*	v;	//	input	width															
											for	(r=0;	r<R;	r	++)	{	//	filter	height																	
													for	(s	=0;	s<	S;	s	++)	{//	filter	width																									
															output_seq[n][k][p][q]	+=		
																							input	[n][c][ij+r][ii+s]	*	weight[k][c][r][s];													
}	}	}	}	}	}	}	
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