

Bialystok, Poland, September 8-11, 2019

High Performance Computing and Big Data: Challenges for the Future

Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester

9/9/19

- Overview of High Performance Computing
- Look at issues on convergence of HPC and Big Data
- Killer app for HPC, BD, and Machine Learning.

H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful Computers in the World
- Yardstick: Rmax from LINPACK MPP

Ax = b, dense problem

Updated twice a year
 SC'xy in the States in November
 Meeting in Germany in June

- All data available from www.top500.org

State of Supercomputing in 2019

- Pflops (> 10¹⁵ Flop/s) computing fully established with all 500 systems.
- Three technology architecture possibilities or "swim lanes" are thriving.
 - Commodity (e.g. Intel)
 - Commodity + accelerator (e.g. GPUs) (133 systems)
 - Special purpose lightweight cores (e.g. IBM BG, Knights Landing, TaihuLight, ARM (only 1 system))
- Interest in supercomputing is now worldwide, and growing in many new markets (~50% of Top500 computers are in industry).
- Intel processors largest share, 96% followed by AMD, .6%.
- Exascale (10¹⁸ Flop/s) projects exist in many countries and regions.

June 2019: The TOP 10 Systems (1/3 of the Total Performance)

Ç

_	Rank	Site	Computer	Country	Cores	Rmax [Pflops]	% of Peak	Power [MW]	GFlops/ Watt
	1	DOE / OS Oak Ridge Nat Lab	Summit, IBM Power 9 (22C, 3.0GHz), Nvidia GV100 (80C), Mellonox EDR	USA	2,397,824	149.	74	11.1	14.7
	2	DOE / NNSA L Livermore Nat Lab	Sierra, IBM Power 9 (22C, 3.1GHz), Nvidia GV100 (80C), Mellonox EDR	USA	1,572,480	94.6	75	7.44	12.7
	3	National Super Computer Center in Wuxi	Sunway TaihuLight, SW26010 (260C) + Custom	China	10,649,000	93.0	74	15.4	6.05
	4	National Super Computer Center in Guangzhou	Tianhe-2A NUDT, Xeon (12C) + <mark>MATRIX-2000</mark> + Custom	China	4,981,760	61.4	61	18.5	3.32
	5	Texas Advanced Computing Center / U of Texas	Frontera, Dell C6420, Xeon Platinum, 8280 28C 2.7 GHz, Mellanox HDR		448, 448	23.5	61		
	6	Swiss CSCS	Piz Daint, Cray XC50, Xeon (12C) + Nvidia P100 (56C) + Custom	Swiss	387,872	21.2	78	2.38	8.90
	7	DOE / NNSA Los Alamos & Sandia	Trinity, Cray XC40,Xeon Phi (68C) + Custom	USA I	979,968	20.2	<i>49</i>	7.58	2.66
	8	Nat Inst of Advanced Indust Sci & Tech	AI Bridging Cloud Infrast (ABCI) Fujitsu Xeon (20C, 22.4GHz) <mark>Nvidia V100 (80C)</mark> IB-EDR	Japan	391,680	16.9	61	1.65	12.05
	9	Leibniz Rechenzentrum	SuperMUC-NG, Lenovo, ThinkSystem SD530, Xeon Platinum 8174 24C 3.1GHz, Intel Omni-Path	Germany	311,040	19.5	72		
	10	DOE / NNSA L Livermore Nat Lab	Lassen, IBM Power System p9 22C 3.1 GHz, Mellanox EDR, Nvdida V100 (80C)		288,288	18.2	79		

Performance Development of HPC over the Last 26 Years from the Top500

COUNTRIES SHARE

In terms of performance: US has 38% China has 30% Japan has 7.5%

Performance Distribution

Tpeak₅₀ = 3.944 Pflop/s

8 9/9/19

 $Tpeak_{500} = 1.022 Pflop/s$

54% of the total performance of Top500 in Top50

9

Current #1 System Overview

System Performance

- Peak performance of 200 Pflop/s for modeling & simulation
- Peak performance of 3.3 Eflop/s for 16 bit floating point used in for data analytics, ML, and artificial intelligence

Each node has

- 2 IBM POWER9 processors
 - Each w/22 cores
 - 2.3% performance of system
- 6 NVIDIA Tesla V100 GPUs
 - Each w/80 SMs
 - 97.7% performance of system
- 608 GB of fast memory
- 1.6 TB of NVMe memory

The system includes

- 4608 nodes
 - 27,648 GPUs
 - Street value \$15K each
- Dual-rail Mellanox EDR InfiniBand network
- 250 PB IBM Spectrum Scale file system transferring data at 2.5 TB/s

US Department of Energy Exascale Computing Program has formulated a holistic approach that uses co-design and integration to achieve capable exascale

Department of Energy (DOE) Roadmap to Exascale Systems

An impressive, productive lineup of accelerated node systems supporting DOE's mission

hpcg-benchmark.org

HPCG Results; The Other Benchmark

- High Performance Conjugate Gradients (HPCG).
- Solves Ax=b, A large, sparse, b known, x computed.
- An optimized implementation of PCG contains essential computational and communication patterns that are prevalent in a variety of methods for discretization and numerical solution of PDEs
- Patterns:
 - Dense and sparse computations.
 - Dense and sparse collectives.
 - Multi-scale execution of kernels via MG (truncated) V cycle.
 - Data-driven parallelism (unstructured sparse triangular solves).
- Strong verification (via spectral properties of PCG).

	Rank	Site	Computer	Cores	HPL Rmax (Pflop/s)	TOP500 Rank	HPCG (Pflop/s)	Fraction of Peak
PCG Benchmark June 2019	1	DOE/SC/ORNL USA	Summit, AC922, IBM POWER9 22C 3.7GHz, Dual-rail Mellanox FDR, NVIDIA Volta V100, IBM	2,397,824	148.60	1	2.926	1.5%
201	2	DOE/NNSA/LLNL USA	Sierra , S922LC, IBM POWER9 20C 3.1 GHz, Mellanox EDR, NVIDIA Volta V100, IBM	1,572,480	94.64	2	1.796	1.4%
June	3	RIKEN Advanced Institute fo Computational Science Japan	r K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect, Fujitsu	705,024	10.51	18	0.603	5.3%
ark J	4	DOE/NNSA/LANL/SNL USA	Trinity, Cray XC40, Intel Xeon E5-2698 v3 16C 2.3GHz, Aries, Cray	979,072	20.16	6	0.546	1.3%
chma	5	Natl. Inst. Adv. Industrial Sci. and Tech. (AIST) Japan	ABCI, PRIMERGY CX2570M4, Intel Xeon Gold 6148 20C 2.4GHz, Infiniband EDR, NVIDIA Tesla V100, Fujitsu	368,640	16.86	10	0.509	1.7%
G Ben	6	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint , Cray XC50, Intel Xeon E5-2690v3 12C 2.6GHz, Cray Aries, NVIDIA Tesla P100 16GB, Cray	387,872	21.23	5	0.497	1.8%
HPC	7	National Supercomputing Center in Wuxi China	Sunway TaihuLight, Sunway MPP, SW26010 260C 1.45GHz, Sunway, NRCPC	10,649,600	93.02	3	0.481	0.4%
	8	Korea Institute of Science and Technology Information Republic of Korea	Nurion, CS500, Intel Xeon Phi 7250 68C 563584C 1.4GHz, Intel Omni-Path, Intel Xeon Phi 7250, Cray	570,020	13.93	13	0.391	1.5%
	9	Joint Center for Advanced High Performance Computing Japan	Oakforest-PACS , PRIMERGY CX600 M1, Intel Xeon Phi Processor 7250 68C 1.4GHz, Intel Omni-Path Architecture, Fujitsu	556,104	13.55	14	0.385	1.5%
	10	DOE/SC/LBNL/NERSC USA	Cori , XC40, Intel Xeon Phi 7250 68C 1.4GHz, Cray Aries, Cray	622,336	14.02	12	0.355	1.3%

IEEE 754 Half Precision (16-bit) Floating Pt Standard

A lot of interest driven by "machine learning"

exponent

10

sign (5 bit)

fraction

(10 bit)

- Many fields are beginning to adopt machine learning to augment modeling and simulation methods
 - Climate •
 - Biology •
 - **Drug Design** •
 - Epidemology
 - **Materials**
 - Cosmology •

•

High-Energy Physics •

	AMD Rad	leon Instinct	AM
	Instinct MI6	Instinct MI8	Instinct MI25
Memory Type	16GB GDDR5	4GB HBM	"High Bandwidth Cache and Controller"
Memory Bandwidth	224GB/sec	512GB/sec	?
Single Precision	5.7 TELOPS	8.2 TELOPS	12.5 TFLOPS
(FP32)			
Half Precision (FP16)	5.7 TFLOPS	8.2 TFLOPS	25 TFLOPS
TDP	<150W	<175W	<3000
Cooling	Passive	Passive (SFF)	Passive
GPU	Polaris 10	Fiji	Vega
Manufacturing	GloFo 14nm	TSMC 28nm	?

Tesla Product	Tesla K40	Tesla M40	Tesla P100	Tesla V100	
GPU	GK110 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)	
SMs	15	24	56	80	
TPCs	15	24	28	40	
FP32 Cores / SM	192	128	64	64	
FP32 Cores / GPU	2880	3072	3584	5120	
FP64 Cores / SM	64	4	32	32	
FP64 Cores / GPU	960	96	1792	2560	nvidi/
Tensor Cores / SM	NA	NA	NA	8	
Tensor Cores / GPU	NA	NA	NA	640	
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz	1455 MHz	
Peak FP32 TFLOP/s*	5.04	6.8	10.6	15	
Peak FP64 TFLOP / 3	1.68	2.1	5.3	7.5	
Peak Tensor Core TFLOP/s [*]	NA	NA	NA	120	>

Scientific Computing is Changing

- In the past, we moved experimental data to the centralized servers, which provided bulk storage and computational resources for analysis and simulation.
- Three things have changed:
 - CPU advances have enabled edge/IoT devices to be small parallel computers with real operating systems and multithreaded programming models (CUDA, OpenMP, TensorFlow, etc.).
 - Machine learning and AI has helped create a new class of algorithms that can sift through massive amounts of experimental data, and then pushing to the data center only the relevant results
 - Edge devices and scientific instruments are rapidly expanding, creating a new class of "edge software defined instrument" that must connect to cyberinfrastructure.

- These three changes are forcing us to rethink the central services model of HPC and embrace a new model where network infrastructure computes-along-the-way.
- To realize that goal, we need a new conceptual model for programming this new endto-end infrastructure.

- Edge data is too large to collect and transmit.
- Need lightweight learning at the edge: sorting, searching, learning about the distribution.
- Edge data is pulled into the cloud to learn
- Inference model is sent back to the edge.

- Machine learning in the application.
 - for enhanced scientific discovery
- Machine learning in the computational infrastructure.
 - for improved performance
- Machine learning at the edge.
 - for managing data volume

18

Today many precisions to deal with (IEEE Standard)

Туре	Size	Range	$u = 2^{-t}$
half	16 bits	10 ^{±5}	$2^{-11}\approx 4.9\times 10^{-4}$
single double	32 bits 64 bits	10 ^{±38} 10 ^{±308}	$2^{-24} pprox 6.0 imes 10^{-8}$ $2^{-53} pprox 1.1 imes 10^{-16}$
quadruple	128 bits	10 ^{±4932}	$2^{-113}\approx9.6\times10^{-35}$

 Note the number range with half precision (16 bit fl.pt.)
 Sign exponent (8 bits)
 IEEE SP fraction (10 bits)

- Four Performance levels for the different precision
 - 64 bit floating point (FMA): 7.5 Tflop/s
 - 32 bit floating point (FMA): 15 Tflop/s
 - 16 bit floating point (FMA): 30 Tflop/s
 - 16 bit floating point with Tensor core: 120 Tflop/s
 - Numerical characteristics of arithmetic on Tensor core different

Tensor Core Performance from: Mixed Precision Matrix Multiply 4x4 Matrices

Also supports FP16 accumulator mode for inferencing

Study of the Matrix Matrix multiplication kernel on Nvidia V100

Study of the Matrix Matrix multiplication kernel on Nvidia V100

dgemm achieve about 6.4 Tflop/s sgemm achieve about 14 Tflop/s hgemm achieve about 27 Tflop/s Tensor cores gemm reach about 85 Tflop/s

Matrix matrix multiplication GEMM

Study of the Matrix Matrix multiplication kernel on Nvidia V100

dgemm achieve about 6.4 Tflop/s sgemm achieve about 14 Tflop/s hgemm achieve about 27 Tflop/s Tensor cores gemm reach about 85 Tflop/s

Matrix matrix multiplication GEMM

Study of the rank k update used by the LU factorization algorithm on Nvidia V100

For s = 0, nb, .. N

- 1. panel factorize
- 2. update trailing matrix

LU factorization requires O(n³) most of the operations are spent in GEMM

Leveraging Half Precision in HPC on V100 solving linear system Ax = b

For s = 0, nb, .. N

- 1. panel factorize
- 2. update trailing matrix

	TRSM
Panel	GEMM

- Panel Factorization performed with 32 bit fl pt
 - Done using MAGMA on the front-end system
- TRSM Triangular solve performed with 32 bit fl pt
 - Done using V100 (no Tensor core)
- GEMM Matrix Multiply performed with 16 bit fl pt
 - Done on V100 with Tensor cores

Most of the performance comes from GEMM using 16 bit fl pt

Use Mixed Precision algorithms

➤Achieve higher performance

→ faster time to solution

Reduce power consumption by decreasing the execution time

→ Energy Savings !!!

Reference:

A. Haidar, P. Wu, S. Tomov, J. Dongarra,

Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers, SC-17, ScalA17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, ACM, Denver, Colorado, November 12-17, 2017.

A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham,

Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers, SC-18, Dallas, TX, IEEE, November 2018.

Idea: use low precision to compute the expensive flops (LU $O(n^3)$) and then iteratively refine the solution in order to achieve the FP64 arithmetic

Iterative refinement for dense systems, $Ax = b$, can work $C = lu(A)$ x = U\(L\b) r = b - Ax	this way.	lower precision lower precision FP64 precision	<mark>O(n³)</mark> O(n²) O(n²)
<pre>WHILE r not small enough 1. find a correction "z" to adjust x that satisfy Az=r solving Az=r could be done by either:</pre>	Classical Iterative Refinement r Iterative Refinement using GMR	lower precision lower precision FP64 precision FP64 precision	O(n ²) O(n ²) O(n ¹) O(n ²)
END Higham and Carson showed can solve the inner problem Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt r It can be shown that using this approach we can compute the solution to	with iterative method and not infect the sol esults when using DP fl pt. 664-bit floating point precision.	ution. rson & N. Higham, "Acceleratin r Systems by Iterative Refinem	g the Solution o ent in Three

> Need the original matrix to compute residual (r) and matrix cannot be too badly conditioned

Leveraging Half Precision in HPC on V100 Performance Behavior

Flops = $2n^3/(3 \text{ time})$ meaning twice higher is twice faster

- solving Ax = b using FP64 LU
- solving Ax = b using FP32 LU and iterative refinement to achieve FP64 accuracy
- solving Ax = b using FP16 LU and iterative refinement to achieve FP64 accuracy
- solving Ax = b using FP16 Tensor Cores LU and iterative refinement to achieve FP64 accuracy

Problem generated with an arithmetic distribution of the singular values $\sigma_i = 1 - (\frac{i-1}{n-1})(1 - \frac{1}{cond})$ and positive eigenvalues.

Improving Solution

• z is the correction or $(x_{i+1} - x_i)$

Xi

 Computed in lower precision and then added to the approximate solution in higher precision $x_i + z$

 X_{i+1}

Iterative refinement for dense systems, Ax = b, can work this way.

Recent Results Run at Scale...

- Mixed precision iterative refinement approach solved a matrix of order 10,091,520 on ORNL's Summit system.
 - Composed of nodes made up of 2 IBM Power-9 processors (22 cores each) plus 6 Nvidia V100 GPUs (84 SMs each)
 - The run used 4500 nodes of Summit, 2,466,000 cores = 4500*(22*2 + 84*6)
 - Used a random matrix with large diagonal elements to insure convergence of the method.
- Mixed precision HPL achieved 445 PFLOPS or 2.95X over DP precision HPL result on the Top500 (148 PFLOPS).
 - 43 Gflops/Watt
- Same accuracy compared to full 64 bit precision

Conclusion:

- We accelerated the solution of linear system Ax = b solver using hardware-accelerated FP16 arithmetic on GPUs;
- We introduced a framework for exploiting mixed-precision FP16-FP32/FP64 iterative refinement solvers and describe the path to draw high-performance and energy-aware GPU implementations;
 - Ideas can be applied to other 1 sided reductions (LU, LL^T, LDL^T, QR) and also for 2 sided in the case of eigenvalue/vectors. Building this into the SLATE LA library (will replace LAPACK and ScaLAPACK, part of DOE-ECP).
- Our technique shows that a number of problems can be accelerated up to 4X by the usage of the FP16-TC or 2X using the FP32 arithmetic.
- > We have rigorous error analysis to support everything.
- Potentially provide an additional benchmarks for ML Supercomputers, looking at mixed precision performance.

Questions?

- Am I guaranteed the stability, accuracy and convergence properties using lower precision?
 - Maybe, depends on the condition of the matrix, algorithm needs 1 digit of accuracy in the approximation, then will converge to full accuracy.
- What memory and performance improvements can I expect when using lower precision?
 - Cost is 1.25 times the memory, potential factor of 4 improvement in time to solution
- What implementation challenges exist for application and enabling technologies developers?
 - Can be put into applications now.