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Outline

• Overview of High Performance Computing
• Look at issues on convergence of HPC and Big Data
• Killer app for HPC, BD, and Machine Learning.
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Since 1993 
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H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful Computers in the World
- Yardstick: Rmax from LINPACK MPP

Ax=b, dense problem

- Updated twice a year
SC‘xy in the States in November
Meeting in Germany in June

- All data available from www.top500.org
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State of Supercomputing in 2019
• Pflops (> 1015 Flop/s) computing fully established with all 500 

systems.

• Three technology architecture possibilities or “swim lanes” are 
thriving.
• Commodity (e.g. Intel)

• Commodity + accelerator (e.g. GPUs) (133 systems)

• Special purpose lightweight cores (e.g. IBM BG, Knights Landing, TaihuLight, 
ARM (only 1 system))

• Interest in supercomputing is now worldwide, and growing in many 
new markets (~50% of Top500 computers are in industry).

• Intel processors largest share, 96% followed by AMD, .6%.

• Exascale (1018 Flop/s) projects exist in many countries and regions.
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June 2019: The TOP 10 Systems (1/3 of the Total Performance) 

Rank     Site Computer Country Cores Rmax
[Pflops]

% of 
Peak

Power
[MW]

GFlops/
Watt

1 DOE / OS
Oak Ridge Nat Lab

Summit, IBM Power 9 (22C, 3.0GHz),          
Nvidia GV100 (80C), Mellonox EDR USA 2,397,824 149. 74 11.1 14.7

2 DOE / NNSA
L Livermore Nat Lab

Sierra, IBM Power 9 (22C, 3.1GHz),
Nvidia GV100 (80C), Mellonox EDR USA 1,572,480 94.6 75 7.44 12.7

3 National Super Computer 
Center in Wuxi Sunway TaihuLight, SW26010 (260C) + Custom China 10,649,000 93.0 74 15.4 6.05

4 National Super Computer 
Center in Guangzhou

Tianhe-2A NUDT, 
Xeon (12C) + MATRIX-2000 + Custom China 4,981,760 61.4 61 18.5 3.32

5 Texas Advanced Computing 
Center / U of Texas

Frontera, Dell C6420, Xeon Platinum, 8280 28C 2.7 
GHz, Mellanox HDR USA 448,448 23.5 61

6 Swiss CSCS Piz Daint, Cray XC50, Xeon (12C) +             
Nvidia P100 (56C) + Custom Swiss 387,872 21.2 78 2.38 8.90

7 DOE / NNSA 
Los Alamos & Sandia Trinity, Cray XC40,Xeon Phi (68C) + Custom USA 979,968 20.2 49 7.58 2.66

8 Nat Inst of Advanced
Indust Sci & Tech

AI Bridging Cloud Infrast (ABCI) Fujitsu         
Xeon (20C, 22.4GHz) Nvidia V100 (80C) IB-EDR Japan 391,680 16.9 61 1.65 12.05

9 Leibniz Rechenzentrum SuperMUC-NG, Lenovo,ThinkSystem SD530, Xeon 
Platinum 8174 24C 3.1GHz, Intel Omni-Path Germany 311,040 19.5 72

10 DOE / NNSA                 
L Livermore Nat Lab

Lassen, IBM Power System p9 22C 3.1 GHz, 
Mellanox EDR, Nvdida V100 (80C) USA 288,288 18.2 79



Performance Development of HPC over the Last 26 Years from 
the Top500

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 20182019

59.7 GFlop/s

400 MFlop/s

1.17 TFlop/s

148 PFlop/s

1.02 PFlop/s

1.56 EFlop/s

SUM

N=1

N=500

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

1 Eflop/s

My Laptop: 166 Gflop/s

> 2 * Thinking Machine CM-5 with 1024 Processors



COUNTRIES SHARE

China has 42% of the systems 
US has 23% of the systems
Japan has 5.8% of the systems

In terms of performance:
US has 38%
China has 30%
Japan has 7.5%  
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Performance Distribution 

54% of the total performance of Top500 in Top50
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System Performance

• Peak performance of 200 
Pflop/s for modeling & 
simulation

• Peak performance of        
3.3 Eflop/s for 16 bit 
floating point used in for 
data analytics, ML, and 
artificial intelligence 

Each node has

• 2 IBM POWER9 processors
• Each w/22 cores
• 2.3% performance of system

• 6 NVIDIA Tesla V100 GPUs
• Each w/80 SMs
• 97.7% performance of 

system
• 608 GB of fast memory
• 1.6 TB of NVMe memory

The system includes

• 4608 nodes
• 27,648 GPUs
• Street value $15K each

• Dual-rail Mellanox EDR 
InfiniBand network

• 250 PB IBM Spectrum 
Scale 
file system transferring 
data at 2.5 TB/s

Current #1 System Overview



10 Exascale Computing Project, www.exascaleproject.org

US Department of Energy Exascale Computing Program 
has formulated a holistic approach that uses co-design 
and integration to achieve capable exascale
Application Development Software
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Technology
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productive software 

stack
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applications

Hardware technology 
elements
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supercomputers
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ECP’s work encompasses applications, system software, hardware technologies and 
architectures, and workforce development
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LLNL
IBM/NVIDIA

Department of Energy (DOE) Roadmap to Exascale Systems
An impressive, productive lineup of accelerated node systems supporting DOE’s mission

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
Cray/AMD/NVIDIA

LANL/SNL
TBD

ANL
Intel/Cray

ORNL
AMD/Cray

LLNL
Cray/?

LANL/SNL
Cray/Intel  Xeon/KNL

2012 2016 2018 2020 2021-2023

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia (10)

Cori (12)

Trinity (6)

Theta (24)Mira (21)

Titan (9) Summit (1)

NERSC-9
Perlmutter

Aurora

ANL
Cray/Intel KNL

LBNL
Cray/Intel  Xeon/KNL

First U.S. Exascale Systems

Sierra (2)

Pre-Exascale Systems [Aggregate Linpack (Rmax) = 323 PF]

$1.8 B, 
Just for 3 Hardware systems at Exascale



HPCG Results; The Other Benchmark
• High Performance Conjugate Gradients (HPCG).
• Solves Ax=b, A large, sparse, b known, x computed.
• An optimized implementation of PCG contains essential computational 

and communication patterns that are prevalent in a variety of methods 
for discretization and numerical solution of PDEs 

• Patterns:
• Dense and sparse computations.
• Dense and sparse collectives.
• Multi-scale execution of kernels via MG (truncated) V cycle.
• Data-driven parallelism (unstructured sparse triangular solves).

• Strong verification (via spectral properties of PCG).

12hpcg-benchmark.org



Rank Site Computer Cores HPL Rmax
(Pflop/s)

TOP500 
Rank

HPCG 
(Pflop/s)

Fraction of 
Peak

1 DOE/SC/ORNL
USA

Summit, AC922, IBM POWER9 22C 3.7GHz, 
Dual-rail Mellanox FDR, NVIDIA Volta V100, 
IBM

2,397,824 148.60 1 2.926 1.5%

2 DOE/NNSA/LLNL
USA

Sierra, S922LC, IBM POWER9 20C 3.1 GHz, 
Mellanox EDR, NVIDIA Volta V100, IBM 1,572,480 94.64 2 1.796 1.4%

3
RIKEN Advanced Institute for 
Computational Science
Japan

K computer, SPARC64 VIIIfx 2.0GHz, Tofu 
interconnect, Fujitsu 705,024 10.51 18 0.603 5.3%

4 DOE/NNSA/LANL/SNL
USA

Trinity, Cray XC40, Intel Xeon E5-2698 v3 
16C 2.3GHz, Aries, Cray 979,072 20.16 6 0.546 1.3%

5
Natl. Inst. Adv. Industrial Sci. 
and Tech. (AIST)
Japan

ABCI, PRIMERGY CX2570M4, Intel Xeon 
Gold 6148 20C 2.4GHz, Infiniband EDR, 
NVIDIA Tesla V100, Fujitsu

368,640 16.86 10 0.509 1.7%

6
Swiss National 
Supercomputing Centre 
(CSCS)
Switzerland

Piz Daint, Cray XC50, Intel Xeon E5-2690v3 
12C 2.6GHz, Cray Aries, NVIDIA Tesla P100 
16GB, Cray

387,872 21.23 5 0.497 1.8%

7
National Supercomputing 
Center in Wuxi
China

Sunway TaihuLight, Sunway MPP, SW26010 
260C 1.45GHz, Sunway, NRCPC 10,649,600 93.02 3 0.481 0.4%

8
Korea Institute of Science 
and Technology Information
Republic of Korea

Nurion, CS500, Intel Xeon Phi 7250 68C 
563584C 1.4GHz, Intel Omni-Path, Intel Xeon 
Phi 7250, Cray

570,020 13.93 13 0.391 1.5%

9

Joint Center for Advanced 
High Performance 
Computing
Japan

Oakforest-PACS, PRIMERGY CX600 M1, 
Intel Xeon Phi Processor 7250 68C 1.4GHz, 
Intel Omni-Path Architecture, Fujitsu

556,104 13.55 14 0.385 1.5%

10 DOE/SC/LBNL/NERSC
USA

Cori, XC40, Intel Xeon Phi 7250 68C 1.4GHz, 
Cray Aries, Cray 622,336 14.02 12 0.355 1.3%
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Comparison Peak, HPL, and HPCG
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Comparison Peak, HPL, and HPCG
15

1

10

100

1000

10000

100000

1000000

Tf
lo

p/
s



IEEE 754 Half Precision (16-bit) Floating Pt Standard
A lot of interest driven by “machine learning”

• Climate 
• Biology 
• Drug Design
• Epidemology
• Materials 
• Cosmology 
• High-Energy Physics
• …

• Many fields are beginning to 
adopt machine learning to 
augment modeling and simulation 
methods



Scientific Computing is Changing
• In the past, we moved experimental data to the centralized servers, which provided 

bulk storage and computational resources for analysis and simulation. 

• Three things have changed: 
• CPU advances have enabled edge/IoT devices to be small 

parallel computers with real operating systems and multithreaded 
programming models (CUDA, OpenMP, TensorFlow, etc.). 

• Machine learning and AI has helped create a new class of algorithms 
that can sift through massive amounts of experimental data, and 
then pushing to the data center only the relevant results

• Edge devices and scientific instruments are rapidly expanding, 
creating a new class of “edge software defined instrument” that 
must connect to cyberinfrastructure.

• These three changes are forcing us to rethink the central services model of HPC and 
embrace a new model where network infrastructure computes-along-the-way. 

• To realize that goal, we need a new conceptual model for programming this new end-
to-end infrastructure.



• Edge data is too large to collect and 
transmit.

• Need lightweight learning at the edge: 
sorting, searching, learning about the 
distribution.

• Edge data is pulled into the cloud to learn 

• Inference model is sent back to the edge.
18

• Machine learning in the 
application.
§ for enhanced scientific discovery

• Machine learning in the 
computational infrastructure.
§ for improved performance

• Machine learning at the edge.
§ for managing data volume

Edge computing and deep learning with 
feedback for continuous improvement



Mixed Precision
• Today many precisions to deal with (IEEE Standard)

• Note the number range with half precision               
(16 bit fl.pt.)

19Google TPU: bfloat16

largest fl pt
number
65,504

largest fl pt
number
O(1038)float16

IEEE SP



Nvidia Volta Peak Rates

• Four Performance levels for the different precision
• 64 bit floating point (FMA): 7.5 Tflop/s
• 32 bit floating point (FMA): 15 Tflop/s
• 16 bit floating point (FMA): 30 Tflop/s
• 16 bit floating point with Tensor core: 120 Tflop/s
• Numerical characteristics of arithmetic on Tensor core different

20

Tensor Core Performance from:
Mixed Precision Matrix Multiply

4x4 Matrices
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21

4x4 matrix multiply:
32 bit floating point accuracy with 16 bit inputs



Leveraging Half Precision in HPC on V100

matrix size
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Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s

Study of the Matrix Matrix multiplication kernel on Nvidia V100 



Leveraging Half Precision in HPC on V100

matrix size
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Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s
• sgemm achieve about 14   Tflop/s

Study of the Matrix Matrix multiplication kernel on Nvidia V100 

~2X



Leveraging Half Precision in HPC on V100

Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s
• sgemm achieve about 14   Tflop/s
• hgemm achieve about 27   Tflop/s
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~4X



Leveraging Half Precision in HPC on V100

Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s
• sgemm achieve about 14   Tflop/s
• hgemm achieve about 27   Tflop/s
• Tensor cores gemm reach about 85 Tflop/s
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Study of the Matrix Matrix multiplication kernel on Nvidia V100 
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Leveraging Half Precision in HPC on V100

Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s
• sgemm achieve about 14   Tflop/s
• hgemm achieve about 27   Tflop/s
• Tensor cores gemm reach about 85 Tflop/s
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Leveraging Half Precision in HPC on V100

• In LU factorization need matrix 
multiple but operations is a 
rank-k update computing the 
Schur complement

m=n
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Study of the rank k update used by the LU factorization algorithm on Nvidia V100

Rank-k GEMM needed by 
LU does not perform as 

well as square but still OK



solving linear system Ax = b
LU factorization

Leveraging Half Precision in HPC on V100
solving linear system Ax = b

• LU factorization is used to solve a 
linear system Ax=b

A  x = b 

LUx = b

A x b

U
L

x b

L y b

U x y

Ly    = b 

then 
Ux = y



panel

update

step 1 step 2 step 3 step 4 

nb

For s = 0, nb, .. N
1. panel factorize
2. update trailing matrix

Leveraging Half Precision in HPC on V100
solving linear system Ax = b

GEMM

TRSM

Pa
ne

l

L

U

LU factorization requires O(n3)
most of the operations are spent in GEMM

• Panel Factorization
• TRSM - Triangular solve
• GEMM – Matrix Multiply



Leveraging Half Precision in HPC on V100

• LU factorization is used to solve a 
linear system Ax=b

A  x = b 

LUx = b

Ly    = b 

then 
Ux = y

A x b

UL x b

L y b

U x y
matrix size
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Study of the LU factorization algorithm on Nvidia V100

3~4X



For s = 0, nb, .. N
1. panel factorize
2. update trailing matrix

Leveraging Half Precision in HPC on V100
solving linear system Ax = b

GEMM

TRSM

Pa
ne
l

• Panel Factorization performed with 32 bit fl pt
• Done using MAGMA on the front-end system

• TRSM - Triangular solve performed with 32 bit fl pt
• Done using V100 (no Tensor core)

• GEMM – Matrix Multiply performed with 16 bit fl pt
• Done on V100 with Tensor cores

Most of the performance comes from GEMM using 16 bit fl pt



Use Mixed Precision algorithms 
ØAchieve higher performance 

à faster time to solution

ØReduce power consumption by  decreasing the execution time 
à Energy Savings !!!

Leveraging Half Precision in HPC on V100

Reference:
A. Haidar, P. Wu, S. Tomov, J. Dongarra,
Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers,
SC-17, ScalA17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, ACM, Denver, Colorado, November 12-17, 2017.

A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham,
Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers, SC-18, Dallas, TX, IEEE,
November 2018.



Iterative refinement for dense systems, Ax = b, can work this way.
L U = lu(A) lower precision O(n3)
x = U\(L\b) lower precision O(n2)
r = b – Ax FP64 precision O(n2)

WHILE || r || not small enough
1. find a correction “z” to adjust x that satisfy Az=r

solving Az=r could be done by either:
Ø z = U\(L\r) Classical Iterative Refinement lower precision O(n2)
Ø GMRes preconditioned by the LU to solve Az=r Iterative Refinement using GMRes lower precision O(n2)

2. x = x + z FP64 precision O(n1)
3. r = b – Ax FP64 precision O(n2)

END

Idea: use low precision to compute the expensive flops (LU O(n3)) and then iteratively 
refine the solution in order to achieve the FP64 arithmetic

Ø Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
Ø It can be shown that using this approach we can compute the solution to 64-bit floating point precision.
Ø Need the original matrix to compute residual (r) and matrix cannot be too badly conditioned

Leveraging Half Precision in HPC on V100

Higham and Carson showed can solve the inner problem with iterative method and not infect the solution.

E. Carson & N. Higham, “Accelerating the Solution of 
Linear Systems by Iterative Refinement in Three 
Precisions SIAM J. Sci. Comput., 40(2), A817–A847.



Matrix size
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Performance of solving Ax=b

using FP64 or IR with GMRes to achieve FP64 accuracy
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Leveraging Half Precision in HPC on V100
Performance Behavior

• solving Ax = b using FP64 LU

• solving Ax = b using FP32 LU and 
iterative refinement to achieve FP64 
accuracy

• solving Ax = b using FP16 LU and 
iterative refinement to achieve FP64 
accuracy

• solving Ax = b using FP16 Tensor Cores 
LU and iterative refinement to achieve 
FP64 accuracy

Flops = 2n3/(3 time) 
meaning twice higher is twice faster

Problem generated with an arithmetic distribution of the singular values                                          and positive eigenvalues.

Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers ScalA17, November 12–17, 2017, Denver, CO, USA
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(a) matrix with diagonal dominant.
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(b) matrix with positive l and where si is random number between 1
cond ,1 such that

their logarithms are uniformly distributed.
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(c) matrix with positive l and with clustered singular values, si=(1, · · · , 1, 1
cond )
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(d) matrix with clustered singular values, si=(1, · · · , 1, 1
cond )
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(e) matrix with positive eigenvalues and arithmetic distribution of its singular values
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Figure 4: Performance in Tflop/s for the three linear solver (dgesv,dsgesv,dhgesv) and the required number of iterations to achieve
FP64 arithmetic solution using either the dsgesv (orange numbers) or the dhgesv (green numbers) solver, for different matrices size
and different type of matrices. Note that cond = 102 for these experiments.
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Improving Solution
• z is the correction or (xi+1 – xi)
• Computed in lower precision and 

then added to the approximate 
solution in higher precision xi + z

• Can be used in situations like this …  

xi

z

xi+1



Recent Results Run at Scale…
•Mixed precision iterative refinement approach solved 

a matrix of order 10,091,520 on ORNL’s Summit system.
– Composed of nodes made up of 2 IBM Power-9 processors (22 cores each) plus 6 

Nvidia V100 GPUs (84 SMs each)

– The run used 4500 nodes of Summit, 2,466,000 cores = 4500*(22*2 + 84*6)
– Used a random matrix with large diagonal elements to insure convergence of the 

method.

•Mixed precision HPL achieved 445 PFLOPS or 2.95X over DP 
precision HPL result on the Top500 (148 PFLOPS).
– 43 Gflops/Watt

• Same accuracy compared to full 64 bit precision



Conclusion:
Ø We accelerated the solution of linear system Ax = b solver using hardware-accelerated FP16

arithmetic on GPUs;

Ø We introduced a framework for exploiting mixed-precision FP16-FP32/FP64 iterative
refinement solvers and describe the path to draw high-performance and energy-aware GPU
implementations;
Ø Ideas can be applied to other 1 sided reductions (LU, LLT, LDLT, QR) and also for 2 sided

in the case of eigenvalue/vectors. Building this into the SLATE LA library (will replace
LAPACK and ScaLAPACK, part of DOE-ECP).

Ø Our technique shows that a number of problems can be accelerated up to 4X by the usage
of the FP16-TC or 2X using the FP32 arithmetic.

Ø We have rigorous error analysis to support everything.

Ø Potentially provide an additional benchmarks for ML Supercomputers, looking at
mixed precision performance.



Questions?
• Am I guaranteed the stability, accuracy and convergence properties using 

lower precision?
– Maybe, depends on the condition of the matrix, algorithm needs 1 digit of accuracy 

in the approximation, then will converge to full accuracy.

• What memory and performance improvements can I expect when using 
lower precision?
– Cost is 1.25 times the memory, potential factor of 4 improvement in time to 

solution

• What implementation challenges exist for application and enabling 
technologies developers? 
– Can be put into applications now.


