
PARALLEL PERFORMANCE ANALYSIS AT SCALE:

FROM SINGLE NODE TO ONE MILLION HPC CORES

SEP 11, 2019 I BERND MOHR

SETTING THE CONTEXT

• Parallel Performance Analysis can be

• Analytical Using analytical models

• Empirical Using experiments (“monitoring”)

to assess performance

• Parallel could mean

• Loosely-coupled “Grid” / distributed computing

• Tightly-coupled HPC

• Performance Monitoring can target

• Computer systems

• Applications

11. Sep 2019 2

PARALLEL PERFORMANCE TOOLS 101

Background

PERFORMANCE MEASUREMENT CYCLE

11. Sep 2019 4

 Insertion of extra code (probes, hooks)

into application

Instrumentation

 Transformation of the results into representation

that can be easily understood by a human user
Presentation

Measurement Collection of data relevant to

performance analysis

Optimization Elimination of performance problems (Left to User!)

Analysis Calculation of metrics, identification of

performance problems

PERFORMANCE MEASUREMENT

11. Sep 2019 5

When performance measurement is triggered

• External trigger (asynchronous)

• Sampling

• Trigger: Timer interrupt OR

Hardware counters overflow

• Internal trigger (synchronous)

• Code instrumentation

(automatic or manual)

How performance data is recorded

• Profile

• Summation of events over time

• Trace file

• Sequence of events over time

Two dimensions

NO SINGLE SOLUTION IS SUFFICIENT!

11. Sep 2019 6

 Combination of methods, techniques and tools needed

• Instrumentation

• Source code / binary, static / dynamic, manual / automatic

• Measurement

• Internal / external trigger, profiling / tracing

• Analysis

• Statistics, Visualization, Automatic, Data mining, …

MULTI- AND MANY-CORE

PERFORMANCE ANALYSIS

How and Why

PARALLEL ARCHITECTURES: STATE OF THE ART

Network or Switch

...

N0 N1 Nk

Inter-
connect

P0 Pn
...

Memory

A0

Am

...Inter-
connect

P0 Pn
...

Memory

A0

Am

... Inter-
connect

P0 Pn
...

Memory

A0

Am

...

Pi
Core0 Core1 Corer

L10 L11 L1

L20 L2r/2

L30

...

... Aj

Router Router

Router

Router Router

Router

Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

or

PERFORMANCE CHALLENGES FOR HPC SYSTEMS

• HPC systems consist of

• Complex configurations

• With a huge number of components

• Very likely heterogeneous

• With never enough memory

• Dynamically changing configuration due to fault recovery + power saving

 Deep software hierarchies of large, complex software components

are needed to make use of such systems

 Sophisticated integrated performance measurement, analysis, and optimization

capabilities are required to efficiently operate an HPC system

11. Sep 2019 9

DESIRED TOOL FEATURES

11. Sep 2019 10

This requires tools to be

• Portable

• Insightful

• Scalable

• Integrated

• [Versatile]

• [Maintained]

• Easy to use

TYPICAL PERFORMANCE TUNING

11. Sep 2019 11

NOT MANY HPC TOOLS MATCH THESE REQUIREMENTS

•TAU

• University of Oregon, US

• http://tau.uoregon.edu

•HPCToolkit

• Rice University, US

• http://hpctoolkit.org

•Extrae / Paraver

• BSC, Spain

• http://www.bsc.es/paraver

•Vampir / VampirServer

• TU Dresden, Germany

• http://www.vampir.eu

•Scalasca

• JSC/TU Darmstadt, Germany

• http://www.scalasca.org

• [Score-P]

• JSC, TUD, TUDA, TUM, RWTH, Germany

• http://www.score-p.org

PORTABILITY

Run everywhere

SCALASCA: SUPPORTED ARCHITECTURES

• Instrumentation and measurement only

(visual analysis on front-end or workstation)

• Cray XT, XE, XK, XC

• IBM BlueGene/L, BlueGene/P, BlueGene/Q

• K Machine, Fujitsu FX10 and FX100

• Tianhe 1A and 2

• Intel MIC (KNC, KNL)

• Full support (instrumentation, measurement, and automatic analysis)

• Linux IA32, IA64, x86_64, PPC, ARM, and ARM64 based clusters

• IBM AIX Power3/4/5/6/7/8/9 based clusters

11. Sep 2019 14

TYPICAL HPC PLATFORMS

• OS

• Now: Mostly Linux (and HPC microkernels)

• C/C++ and Fortran Compilers (OpenMP, OpenACC)

• GNU, Intel, PGI, Clang, IBM XL, Cray, Fuijtsu, ARM, …

• Different versions supporting different versions of OpenMP and OpenACC

• MPI

• MPICH, OpenMPI, Intel, Cray, IBM PE, SGI, Fujitsu, …

• Different versions supporting different versions of MPI

11. Sep 2019 15

INSIGHTFULNESS

More than numbers and diagrams

INTERACTIVE EVENT TRACE ANALYSIS: VAMPIR

Visual presentation of

dynamic runtime

behaviour

• Event timeline chart for

states & interactions of

processes/threads

• Communication

statistics, summaries &

more

http://www.vampir.eu/

VAMPIR GUI (ZOOM)

Interactive browsing,

zooming, selecting

• Linked displays &

statistics adapt to

selected time interval

Trace formats

• OTF (VampirTrace)

• OTF2 (Score-P)

• EPIK (Scalasca1)

“A PICTURE IS WORTH 1000 WORDS…”

• “Real world”

example

• MPI ring program

“WHAT ABOUT 1000’S OF PICTURES?”

(WITH 100’S OF MENU OPTIONS)

EXAMPLE AUTOMATIC ANALYSIS: LATE SENDER

EXAMPLE MPI WAIT STATES

time

p
ro

c
e
s
s

(a) Late Sender
time

p
ro

c
e
s
s

(b) Late Receiver

time

p
ro

c
e
s
s

(d) Wait at N x N
time

p
ro

c
e
s
s

(c) Late Sender / Wrong Order

ENTER EXIT SEND RECV COLLEXIT

11. Sep 2019 22

SCALASCA

• Scalable Analysis of Large Scale Applications

• Approach

• Instrument C, C++, and Fortran parallel applications (with Score-P)

• Option 1: scalable call-path profiling

• Option 2: scalable event trace analysis

• Collect event traces

• Process trace in parallel

• Wait-state analysis

• Delay and root-cause analysis

• Critical path analysis

• Categorize and rank results

http://www.scalasca.org/

11. Sep 2019 23

SCALASCA EXAMPLE: CESM SEA ICE MODULE

Late Sender

Analysis

• Finds waiting at

MPI_Waitall()

inside

ice boundary

halo update

• Shows distribution

of imbalance

across system

and ranks

SCALASCA EXAMPLE: CESM SEA ICE MODULE

Late Sender

Analysis +

Application

Topology

• Shows distribution

of imbalance

over topology

• MPI topologies

are automatically

captured

SCALASCA ROOT CAUSE ANALYSIS
• Root-cause analysis

• Wait states typically caused by load or

communication imbalances earlier in

the program

• Waiting time can also propagate (e.g.,

indirect waiting time)

• Enhanced performance analysis to find

the root cause of wait states

• Approach

• Distinguish between direct and

indirect waiting time

• Identify call path/process

combinations delaying other

processes and causing first order

waiting time

• Identify original delay

time

Recv

Send

Send

foo

foo

foo

bar

bar Recv

A

B

C

cause

Recv

Recv

Direct waitIndirect wait

Recv

barDELAY

SCALASCA EXAMPLE: CESM SEA ICE MODULE

Direct Wait

Time Analysis

• Direct wait

caused by ranks

processing areas

near the north

and south

ice borders

SCALASCA EXAMPLE: CESM SEA ICE MODULE

Indirect Wait

Time Analysis

• Indirect waits

occurs for

ranks processing

warmer areas

SCALASCA EXAMPLE: CESM SEA ICE MODULE

Delay Costs

Analysis

• Delays NOT
caused on ranks

processing

ice!

INTEGRATION

Together we are strong

INTEGRATION

• Need integrated tool (environment) for all levels of parallelization

• Inter-node (MPI, PGAS, SHMEM)

• Intra-node (OpenMP, multi-threading, multi-tasking)

• Accelerators (OpenACC, CUDA, OpenCL, and many more)

• Integration with performance modeling and prediction

• No tool fits all requirements

• Interoperability of tools

• Integration via open interfaces

11. Sep 2019 31

STATUS: GPU SUPPORT (BEYOND MPI+OPENMP)

11. Sep 2019 32

Tool GPU programming systems supported

TAU AMD ROCm+HIP, Kokkos, OpenCL, OpenACC, CUDA

• Plans to support OpenMP target

HPCToolkit OpenMP target, CUDA, RAJA, Kokkos

Extrae/Paraver CUDA, OpenCL, OmpSs

• Plans to support OpenACC, OpenMP target

Score-P/Scalasca/Vampir CUDA, OpenACC, OpenCL

• Experimental support for Kokkos, OmpSs

• Plans to support OpenMP target

*

* No publicly accepted definition what “XXX support” actually means

33

• Community-developed
open-source

• Replaced tool-specific
instrumentation and
measurement components
of partners

• http://www.score-p.org

11. Sep 2019

http://www.score-p.org/

Scalasca
wait-state

analysis

CUBE4
report

TOOL ECOSYSTEM

CUBE4
report

Online interface

Instrumented

target

application

Score-P

PAPI

OTF2
traces

TAU
PerfExplorer

Periscope

TAU

ParaProf

CUBE

Vampir

Remote Guidance

11. Sep 2019 34

EXTREME CONCURRENCY

To infinity and beyond

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

1,000,000.00

10,000,000.00

100,000,000.00

2
00

0/
0

6

2
00

0/
1

1

2
00

1/
0

6

2
00

1/
1

1

2
00

2/
0

6

2
00

2/
1

1

2
00

3/
0

6

2
00

3/
1

1

2
00

4/
0

6

2
00

4/
1

1

2
00

5/
0

6

2
00

5/
1

1

2
00

6/
0

6

2
00

6/
1

1

2
00

7/
0

6

2
00

7/
1

1

2
00

8/
0

6

2
00

8/
1

1

2
00

9/
0

6

2
00

9/
1

1

2
01

0/
0

6

2
01

0/
1

1

2
01

1/
0

6

2
01

1/
1

1

2
01

2/
0

6

2
01

2/
1

1

2
01

3/
0

6

2
01

3/
1

1

2
01

4/
0

6

2
01

4/
1

1

2
01

5/
0

6

2
01

5/
1

1

2
01

6/
0

6

2
01

6/
1

1

2
01

7/
0

6

2
01

7/
1

1

2
01

8/
0

6

2
01

8/
1

1

2
01

9/
0

6

Maximum

#51

Average

Medium

Minimum

TYPICAL HPC SYSTEM SIZE (NO. OF CORES)

Number of Cores

TOP 500 systems

2000 to 2019

• 2019/06 Avg:

• 120,160

• 2019/06 Median:

• 57,600

11. Sep 2019 36

L
o

g
a

ri
th

m
ic

!

ROADS TO PERFORMANCE TOOL SCALABILITY

• Scalable data collection and reduction

• Parallel collection + reduction based on MPI + parallel I/O (All tools)

• Automatic detection of most important execution phases (Paraver)

• Scalable parallel data analysis

• Parallel client/server processing and visualization (Vampir)

• Parallel wait-state, delay and critical-path analysis (Scalasca)

• Parallel analyzer and visualizer (Paraver)

• Scalable visualizations

• 3D charts and topology displays (TAU, Scalasca)

• Hierarchical browsers (Scalasca)
11. Sep 2019 37

STATUS: TOOLS SCALABILITY

Tool Largest (stunt) run by developer Max size expert user

TAU 786,432 processes

• 48 racks Mira, BG/Q, ALCF

• KG (Klein Gordon) code. MPI only

O(100K)

HPCToolkit 64K processes

• Cielo, SNL/LANL

• Shock physics code

O(10K)
• ECP funded scalability

enhancements by Q4/2019

Extrae/Paraver 64K processes

• Cray XT5

• PFLOTRAN

O(1K)

Score-P/Scalasca 28,672 x 64 1,835,008 threads (28,672 x 64)

• 28 racks JuQueen, BG/Q, JSC

• Nekbone (CORAL benchmark)

O(100K)

Score-P/Vampirserver 200,448 processes

• JaguarPF, OLCF

• S3D (SNL)

• Required 21,516 analysis processes

O(10K)

VAMPIRSERVER: TRACE VISUALIZATION S3D@200,448

• OTF2

trace

4.5 TB

• Vampir

Server

running

with

20,000

analysis

processes

11. Sep 2019 39

SCALASCA: 1,835,008 THREADS TEST CASE

• Nekbone

• CORAL benchmark

• JuQueen experiment

• 28,672 x 64 =

1,835,008 threads

• Load imbalance at

OpenMP critical

section

PERFORMANCE ASSESSMENT

AS A SERVICE

Do I really need that?

POP CoE (https://pop-coe.eu)

• A Centre of Excellence

• On Performance Optimisation and Productivity

• Promoting best practices in parallel programming

• Providing FREE Services
• Precise understanding of application and system behaviour
• Suggestion/support on how to refactor code in the most productive way

• Horizontal

• Transversal across application areas, platforms, scales

• For (EU) academic AND industrial codes and users !

11. Sep 2019 42

• Who?
• BSC, ES (coordinator)

• HLRS, DE

• IT4I, CZ

• JSC, DE

• NAG, UK

• RWTH Aachen, IT Center, DE

• TERATEC, FR

• UVSQ, FR

A team with

• Excellence in performance tools and tuning

• Excellence in programming models and practices

• Research and development background AND
proven commitment in application to real academic and industrial use cases 43

Partners

• Parallel Application Performance Assessment
• Primary service

• Identifies performance issues of customer code (at customer site)

• If needed, identifies the root causes of the issues found and
qualifies and quantifies approaches to address them (recommendations)

• Combines former Performance Audit (?) and Plan (!)

• Medium effort (1-3 months)

• Proof-of-Concept ()
• Follow-up service

• Experiments and mock-up tests for customer codes

• Kernel extraction, parallelisation, mini-apps experiments to show
effect of proposed optimisations

• Larger effort (3-6 months)

Note: Effort shared between our experts and customer!

FREE Services provided by the CoE

44

45

Status after 2½ Years (End of Phase1)

• 139 completed or reporting to customer

• 13 more in progress
Performance
Assessments

• 19 completed Proofs of Concept

• 3 more in progress
Proof-of-
Concept

• See https://pop-coe.eu/blog/tags/success-stories

• Performance Improvements for SCM’s ADF Modeling Suite

• 3x Speed Improvement for zCFD Computational Fluid Dynamics Solver

• 25% Faster time-to-solution for Urban Microclimate Simulations

• 2x performance improvement for SCM ADF code

• Proof of Concept for BPMF leads to around 40% runtime reduction

• POP audit helps developers double their code performance

• 10-fold scalability improvement from POP services

• POP performance study improves performance up to a factor 6

• POP Proof-of-Concept study leads to nearly 50% higher performance

• POP Proof-of-Concept study leads to 10X performance improvement for customer

Some PoC Success Stories

Improvements

Reductions

11. Sep 2019 46

https://pop-coe.eu/blog/tags/success-stories

ROI Examples

Application Savings after POP Proof-of-Concept

• POP PoC resulted in 72% faster-time-to-solution

• Production runs on ARCHER (UK national academic supercomputer)

• Improved code saves €15.58 per run

• Yearly savings of around €56,000 (from monthly usage data)

Application Savings after POP Performance Plan

• Cost for customer implementing POP recommendations: €2,000

• Achieved improvement of 62%

• €20,000 yearly operating cost

• Resulted in yearly saving of €12,400 in compute costs ROI of 620%
11. Sep 2019 47

OUTSTANDING ISSUES

What does not work right now very well

FUTURE WORK

• Memory and vectorization performance analysis

• Hard to capture performance data

• Only possible if suitable hardware counters are provided

• VERY processor specific hard for open-source portable tools

• Trend towards task-based / asynchronous programming models

• Very dynamic execution might be non reproducible off-line tools fail

• Hard to get the “big picture” good high-level metrics still missing here

• Trend towards more modern programming languages (Python, C++)

• How to automatically instrument template-based frameworks and programming styles?

• How to present the data on Python level (and not on the interpreter lowlevel)?

• Performance assessment of data analytics codes

11. Sep 2019 49

USEFUL RESOURCES

Overview Parallel Performance and Debugging Tools

• http://pramodkumbhar.com/2017/04/summary-of-profiling-tools/

• http://pramodkumbhar.com/2018/06/summary-of-debugging-tools/

• http://pramodkumbhar.com/2019/05/summary-of-python-profiling-tools-part-i/

5011. Sep 2019

http://pramodkumbhar.com/2017/04/summary-of-profiling-tools/
http://pramodkumbhar.com/2018/06/summary-of-debugging-tools/
http://pramodkumbhar.com/2019/05/summary-of-python-profiling-tools-part-i/

MY REQUEST

• Give performance tools a chance!

• It will require effort

• Need to read and understand tool documentation

• Attend tool tutorial at conference or tool training at HPC centres

• Attend tuning workshops or performance hackathons

• Do not give up at the first thing that does not work

• Ask for help from tool developers

• Report tool (and documentation) bugs

5111. Sep 2019

PERFORMANCE TUNING: STILL A PROBLEM?

11. Sep 2019 52

09-Sep-19 53

Contact:
https://www.pop-coe.eu
mailto:pop@bsc.es

@POP_HPC
youtube.com/c/POPHPC

This project has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 676553 and 824080.

Performance Optimisation and Productivity
A Centre of Excellence in HPC

QUESTIONS?

• http://www.scalasca.org

• scalasca@fz-juelich.de

• http://www.score-p.org

• support@score-p.org

11. Sep 2019 54

B A C K U P

MEASUREMENT METHODS: PROFILING

• Recording of aggregated information

• Time

• Counts

• Calls

• Hardware counters

• about program and system entities

• Functions, call sites, loops, basic blocks, …

• Processes, threads

• Statistical information

• Min, max, mean and total number of values

11. Sep 2019 56

Advantages
+ Works also for

long-running programs

Disadvantages
‒ Variations over time

get lost

MEASUREMENT METHODS: TRACING

• Recording information about significant

points (events) during execution of the program

• Enter/leave a code region (function, loop, …)

• Send/receive a message ...

• Save information in event record

• Timestamp, location ID, event type

• plus event specific information

• Event trace := stream of event records

sorted by time

 Abstract execution model on level of defined events

11. Sep 2019 57

Advantages
+ Can be used to

reconstruct the
dynamic behavior

+ Profiles can be calculated
out of trace data

Disadvantages
‒ Can only be used for

short durations or small
configurations

‒ HUGE trace files

EVENT TRACING

void foo() {

...

send(B, tag, buf);

...

}

Process A

void bar() {

...

recv(A, tag, buf);

...

}

Process B

MONITOR

MONITOR

s
y
n

c
h

ro
n

iz
e

(d
)

void bar() {

trc_enter("bar");

...

recv(A, tag, buf);

trc_recv(A);

...

trc_exit("bar");

}

void foo() {

trc_enter("foo");

...

trc_send(B);

send(B, tag, buf);

...

trc_exit("foo");

}

instrument

Global trace

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

merge

unify
1 foo

2 bar

...

58 ENTER 1

62 SEND B

64 EXIT 1

...

...

Local trace A

Local trace B

foo1

...

bar1

...

60 ENTER 1

68 RECV A

69 EXIT 1

...

...

EVENT TRACING: “TIMELINE” VISUALIZATION

1 foo

2 bar

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main

foo

bar

58 60 62 64 66 68 70

B

A

11. Sep 2019 59

JÜLICH SUPERCOMPUTING CENTRE

Forschungszentrum Jülich GmbH

FORSCHUNGSZENTRUM JÜLICH GMBH

• Germany's largest

national laboratory

• About 5800 employees

• Research areas

• Information technology

• Health (Neuroscience /

brain research)

• Energy

• Atmosphere + Climate

11. Sep 2019 61

JÜLICH SUPERCOMPUTING CENTRE (JSC)

HPC Centre for

• Forschungszentrum Jülich

• Jülich Aachen

Research Alliance (JARA)

• Germany as GCS

(1 of 3 German National

Centres)

• Europe

(1st European Centre

inside PRACE)

11. Sep 2019 62

JSC MACHINE HALL (JULY 2018)

JURECA
~45.000 cores Haswell

JURECA Booster
~1700 KNL nodes

JUWELS
~110.000 cores Skylake

JUQUEEN
458.752 cores IBM BGQ

STORAGE

STORAGE

11. Sep 2019 63

… WHEN LARGE COMPANIES

“COPY” YOUR STUFF

You KNOW YOU made it …

Source:

https://software.intel.com/en-us/videos/quickly-discover-performance-issues-with-the-intel-trace-analyzer-and-collector-90-beta

Source:

https://software.intel.com/en-us/videos/quickly-discover-performance-issues-with-the-intel-trace-analyzer-and-collector-90-beta

INTEGRATION

Together we are strong

FUNCTIONALITY

• Provide typical functionality for HPC performance tools

• Instrumentation (various methods)

• Multi-process paradigms (MPI, SHMEM)

• Thread-parallel paradigms (OpenMP, POSIX threads)

• Accelerator-based paradigms (OpenACC, CUDA, OpenCL)

• In any combination!

• Flexible measurement without re-compilation:

• Basic and advanced profile generation (CUBE4 format)

• Event trace recording (OTF2 format)

• Online access to profiling data

• Highly scalable I/O functionality

• Support all fundamental concepts of partner’s tools

11. Sep 2019 68

SCALASCA VAMPIR INTEGRATION

1. Connect to Vampir

• Loads underlying trace

SCALASCA VAMPIR INTEGRATION

1. Connect to Vampir

• Loads underlying trace

2. Use context menu

• Max severity

• Zooms to

corresponding view

SCALASCA VAMPIR INTEGRATION

1. Connect to Vampir

• Loads underlying trace

2. Use context menu

• Max severity

• Zooms to

corresponding view

3. Use extensive Vampir

features to investigate

further

p4 = 1,024

p5 = 2,048

p6 = 4,096

INTEGRATION OF MEASUREMENT AND MODELLING

• Example: DFG SPPEXA Catwalk Project

main() {

foo()

bar()

compute()

}
Instrumentation + Measurement

Performance measurements (profiles)

Input

Output

p1 = 128

p2 = 256

p3 = 512

Automated

modeling

• All functions

Rank Function Model [s]

1 bar() 4.0 * p + 0.1*log(p)

2 compute() 0.5 * log(p)

3 foo() 65.7

CATWALK: RESULT VISUALIZATION

• Reusing Cube

result browser

• However:

browsing functions

instead of values

