
Accelerators
Dirk Schmidl

schmidl@itc.rwth-aachen.de

Thanks to the following people for providing parts of the slides:

- Christian Terboven (RWTH Aachen)

- Sandra Wienke (RWTH Aachen)

- Michael Klemm (Intel)

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

2

Devices

• In how differs an accelerator from just another core?
 different functionality, i.e. optimized for something special

 different (possibly limited) instruction set

→ heterogeneous device

• Assumptions used as design goals for OpenMP 4.0:
 every accelerator device is attached to one host device

 it is probably heterogeneous

 it may or may not share memory with the host device

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

3

Execution Model

• Host-directed execution model

 Copy input data from CPU mem. to device mem.

 Execute the device program

 Copy results from device mem. to CPU mem.

PCI Bus

CPU

MEMORY

GPU

MEMORY

1

2

3

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

4

NVIDIA Kepler

• 7.1 billion transistors

• 13-15 streaming multiprocessors

extreme (SMX)
 Each comprises 192 cores

• 2496-2880 cores

• Memory hierarchy

• Peak performance (K20)

 SP: 3.52 TFlops

 DP: 1.17 TFlops

• ECC support

h
tt

p
:/

/w
w

w
.n

v
id

ia
.c

o
m

/c
o
n
te

n
t/

P
D

F
/k

e
p
le

r/
N

V
ID

IA
-K

e
p
le

r-
G

K
1

1
0
-A

rc
h
it
e
c
tu

re
-W

h
it
e
p
a
p
e
r.

p
d
f

SMX

GPU

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

5

Intel Knights Corner

Intel Xeon Phi Coprocessor
• 1 x Intel Xeon Phi @ 1090 MHz
• 60 Cores (in-order)
• ~ 1 TFLOPS DP Peak
• 4 hardware threads per core (SMT)
• 8 GB GDDR5 memory
• 512-bit SIMD vectors (32 registers)
• Fully-coherent L1 and L2 caches
• Plugged into PCI Express bus

Source: Intel

Execution and data model

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

7

The target construct

#pragma omp target device(0) map(to:input[:N]) map(from:tmp[:N])

#pragma omp parallel for

for (i=0; i<N; i++)

tmp[i] = some_computation(input[i], i);

do_some_other_stuff_on_host();

#pragma omp target device(0) map(to:tmp[:N]) map(from:res)

#pragma omp parallel for reduction(+:res)

for (i=0; i<N; i++)

res += final_computation(tmp[i], i)

h
o
s
t

ta
rg
e
t

h
o
s
t

ta
rg
e
t

h
o
s
t

offload

shaping and
slicing

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

8

The target data construct

#pragma omp target data device(0) map(alloc:tmp[:N])

map(to:input[:N]) map(from:res)

{

#pragma omp target device(0)

#pragma omp parallel for

for (i=0; i<N; i++)

tmp[i] = some_computation(input[i], i);

do_some_other_stuff_on_host();

#pragma omp target device(0)

#pragma omp parallel for reduction(+:res)

for (i=0; i<N; i++)

res += final_computation(tmp[i], i)

}

h
o
s
t

ta
rg
e
t

h
o
s
t

ta
rg
e
t

h
o
s
t

data region

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

9

The target Construct

• Transfers execution to a device
 the region is executed on a device

 the host thread waits for the region to be

completed

 data transfer is performed at entry and exit

if needed

• Map a variable from the current task's data environment to the device data

environment associated with the construct
 the list items that appear in a map clause may include array sections

 alloc-type: each new corresponding list item has an undefined initial value

 to-type: each new corresponding list item is initialized with the original lit item's value

 from-type: declares that on exit from the region the corresponding list item's value is

assigned to the original list item

 tofrom-type: the default, combination of to and from

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

10

The target data construct

• Creates a device data environment for the extent of the region
 when a target data construct is encountered, a new device data environment is created,

and the encountering task executes the target data region

 when an if clause is present and the if-expression evaluates to false, the device is the host

• C/C++

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

11

Synchronization of mapped variables

#pragma omp target data map(alloc:tmp[:N]) map(to:input[:N))

map(from:res)

{

#pragma omp target

#pragma omp parallel for

for (i=0; i<N; i++)

tmp[i] = some_computation(input[i], i);

update_input_array_on_the_host(input);

#pragma omp target map(to:input[:N])

#pragma omp parallel for reduction(+:res)

for (i=0; i<N; i++)

res += final_computation(input[i], tmp[i], i)

}

ERROR:
Mapping of

present data
does not do
an Update.

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

12

Synchronization of mapped variables

#pragma omp target data map(alloc:tmp[:N]) map(to:input[:N))

map(from:res)

{

#pragma omp target

#pragma omp parallel for

for (i=0; i<N; i++)

tmp[i] = some_computation(input[i], i);

update_input_array_on_the_host(input);

#pragma omp target update device(0) to(input[:N])

#pragma omp target

#pragma omp parallel for reduction(+:res)

for (i=0; i<N; i++)

res += final_computation(input[i], tmp[i], i)

}

update explicitly

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

13

target update

• Makes the corresponding list items in the device data environment consistent with

their original list items, according to the specified motion clauses

• C/C++

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

14

Accelerated worksharing

void saxpy(float * restrict y, float * restrict x, float a, int n)

{

#pragma omp target teams map(to:n,a,x[:n]) map(y[:n])

{

int block_size = n/omp_get_num_teams();

#pragma omp distribute dist_sched(static, 1)

for (int i = 0; i < n; i += block_size){

#pragma omp parallel for

for (int j = i; j < i + block_size; j++) {

y[j] = a*x[j] + y[j];

}}

}

workshare (w/o barrier)

workshare (w/ barrier)

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

15

The teams construct

• Creates a league of thread teams where the master thread of each team executes

the region
 the number of teams is determined by the num_teams clause, the number of threads in

each team is determined by the num_threads clause, within a team region team numbers

uniquely identify each team (omp_get_team_num())

 once created, the number of teams remeinas constant for the duration of the teams region

• The teams region is executed by the master thread of each team

• The threads other than the master thread to not begin execution until the master

thread encounteres a parallel region

• Only the following constructs can be closely nested in the team region: distribute,

parallel, parallel loop/for, parallel sections and parallel workshare

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

16

teams construct (2/2)

• A teams construct must be contained within a target construct, which must not

contain any statements or directives outside of the teams construct

• After the teams have completed execution of the teams region, the encountering

thread resumes execution of the enclosing target region

• C/C++

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

17

distribute construct

• Specifies that the iteration of one or more loops will be executed by the thread

teams, the iterations are distributed across the master threads of all teams
 there is no implicit barrier at the end of a distribute construct

 a distribute construct must be closely nested in a teams region

• C/C++:

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

18

Run saxpy twice (Intel KNC)

// Run SAXPY TWICE

#pragma omp target data map(to:x[0:n])
{

#pragma omp target map(tofrom:y[0:n])

#pragma omp parallel for
for (int i = 0; i < n; ++i){

y[i] = a*x[i] + y[i];

}

// y is needed and modified on the host here

#pragma omp target map(tofrom:y[0:n])

#pragma omp parallel for
for (int i = 0; i < n; ++i){

y[i] = b*x[i] + y[i];

}

}

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

19

Run saxpy twice (GPGPU)

// Run SAXPY TWICE
#pragma omp target data map(to:x[0:n])
{
#pragma omp target map(tofrom:y[0:n])
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for
for (int i = 0; i < n; ++i){

y[i] = a*x[i] + y[i];
}

// y is needed and modified on the host here
#pragma omp target map(tofrom:y[0:n])
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for
for (int i = 0; i < n; ++i){

y[i] = b*x[i] + y[i];
}

}

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

20

declare target directive

• Specifies that [static] variables, functions (C, C++ and Fortran) and subroutines

(Fortran) are mapped to a device
 if a list item is a function or subroutine then a device-specific version of the routines is

created that can be called from a target region

 if a list item is a variable then the original variable is mapped to a corresponding variable

in the initial device data environment for all devices (if the variable is initialized it is

mapped with the same value)

 all declarations and definitions for a function must have a declare target directive

• C/C++:

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

21

OpenMP 4.5 – asynchonous execution

• The nowait clause indicates that the

encountering thread does not wait for

the target region to complete.

• A host task is generated that encloses

the target region.

• The depend clause can be used for

synchronization with other tasks

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

22

OpenMP 4.5 - Unstructured data movement

• Structured target data construct is too restrictive and does not fit for C++

(de)constructors.

• target enter data
 Map variable to a device

• target exit data
 Map variable from a device

• Clauses are if, device, map, depende and nowait with their usual meaning.

C/C++

#pragma omp target enter data [clause]

#pragma omp target exit data [clause]

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017 , September 10, 2017, Lublin, Poland

23

Device Pointers

• New clauses

 #pragma omp target data … use_device_ptr(list) ..
 #pragma omp target … is_device_ptr(list) ..

• New API

 void* omp_target_alloc(size_t size, int device_num);
 void omp_target_free(void * device_ptr, int device_num);
 int omp_target_is_present(void * ptr, size_t offset, int device_num);
 int omp_target_memcpy(void * dst, void * src, size_t length, size_t

dst_offset, size_t src_offset, int dst_device_num, int src_device_num);
 int omp_target_memcpy_rect(void * dst, void * src, size_t

element_size, int num_dims, const size_t* volume, const size_t*
dst_offsets, const size_t* src_offsets, const size_t* dst_dimensions,
const size_t* src_dimensions,int dst_device_num, int
src_device_num);

 int omp_target_associate_ptr(void * host_ptr, void * device_ptr,
size_t size, size_t device_offset, int device_num);

 int omp_target_disassociate_ptr(void * ptr, int device_num);
 int omp_get_initial_device (void)

Thank you for your attention!

Questions?

