
OpenMP Overview
Dirk Schmidl

schmidl@itc.rwth-aachen.de

Thanks to the following people for providing parts of the slides:

- Christian Terboven (RWTH Aachen)

- Sandra Wienke (RWTH Aachen)

- Michael Klemm (Intel)

Core concept

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

3

The OpenMP Execution Model

Fork and Join Model
Master

Thread

Worker

Threads
Parallel

region

Synchronization

Parallel

region

Worker

Threads

Synchronization

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

4

Defining Parallelism in OpenMP

!$omp parallel [clause[[,] clause] ...]

"this code is executed in parallel"

!$omp end parallel (note: implied barrier)

#pragma omp parallel [clause[[,] clause] ...]
{

"this code is executed in parallel"

} // End of parallel section (note: implied barrier)

A parallel region is a block of code executed by

all threads in the team

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

5

The Worksharing Constructs

 The work is distributed over the threads
 Must be enclosed in a parallel region
 Must be encountered by all threads in the team, or none at all
 No implied barrier on entry
 Implied barrier on exit (unless the nowait clause is specified)
 A work-sharing construct does not launch any new threads

#pragma omp for
{

....
}

!$OMP DO
....

!$OMP END DO

#pragma omp sections
{

....
}

!$OMP SECTIONS
....

!$OMP END SECTIONS

#pragma omp single
{

....
}

!$OMP SINGLE
....

!$OMP END SINGLE

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

6

The OpenMP Memory Model

T

private

memor

y

T

private

memor

y

T T
private

memor

y

private

memor

y

T
private

memor

y

Shared

Memory

 All threads have access
to the same, globally
shared memory

 Data in private memory
is only accessible by the
thread owning this
memory

 No other thread sees
the change(s) in private
memory

 Data transfer is through
shared memory and is
100% transparent to the
application

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

7

Scoping Rules

• Managing the Data Environment is the challenge of OpenMP.

• Scoping in OpenMP: Dividing variables in shared and private:
 private-list and shared-list on Parallel Region

 private-list and shared-list on Worksharing constructs

 General default is shared for Parallel Region, firstprivate for Tasks.

 Loop control variables on for-constructs are private

 Non-static variables local to Parallel Regions are private

 private: A new uninitialized instance is created for each thread

 firstprivate: Initialization with Master‘s value

 lastprivate: Value of last loop iteration is written back to Master

 Static variables are shared

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

8

Privatization of Global/Static Variables

• Global / static variables can be privatized with the threadprivate directive
 One instance is created for each thread

 Before the first parallel region is encountered

 Instance exists until the program ends

 Does not work (well) with nested Parallel Region

 Based on thread-local storage (TLS)
 TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword __thread

(GNU extension)

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$omp threadprivate(i)

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

9

Gotcha’s

• Need to get this right
 Part of the learning curve

• Private data is undefined on entry and exit
 Can use firstprivate and lastprivate to address this

• Each thread has its own temporary view on the data
 Applicable to shared data only

 Means different threads may temporarily not see the same value for the same variable ...

 Let me explain

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

10

The Flush Directive

X = 0

while (X == 0)
{

“wait”
}

X = 1

Thread A Thread B

If shared variable X is kept within a register, the modification
may not be made visible to the other thread(s)

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

11

The Flush construct

• Strongly recommended: do not use this directive
 … unless really necessary. Really .

 Could give very subtle interactions with compilers

 If you insist on still doing so, be prepared to face the OpenMP language lawyers

• Implied on many constructs
 A good thing

 This is your safety net

!$omp flush [(list)]#pragma omp flush [(list)]

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

12

The OpenMP Barrier

• Several constructs have an implied barrier
 This is another safety net (has implied flush by the way)

• In some cases, the implied barrier can be left out through the “nowait” clause

• This can help fine tuning the application
 But you’d better know what you’re doing

• The explicit barrier comes in quite handy then

!$omp barrier#pragma omp barrier

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

13

The Nowait Clause

• To minimize synchronization, some directives support the optional nowait clause
 If present, threads do not synchronize/wait at the end of that particular construct

• In C, it is one of the clauses on the pragma

• In Fortran, it is appended at the closing part of the construct

!$omp do
:
:

!$omp end do nowait

#pragma omp for nowait
{

:
}

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

14

Mutual exclusion

• A Critical Region is executed by all threads, but by only one thread simultaneously

(Mutual Exclusion).

• OpenMP also provides locks und locking routines
 omp_lock_t

 omp_init_lock()

 omp_set_lock()

 omp_unset_lock()

 omp_test_lock()

 omp_init_lock()

C/C++

#pragma omp critical (name)

{

... structured block ...

}

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

15

Performance Optimization for Locking

• Don’t use locks

• Fine-grained locking
 Push locks towards the finest granularity of data access (if possible)

 May avoid mutual exclusion of lengthy sequences of execution

• Lock-free data structures
 Don’t use locks, but use atomic instruction of the machine

 Advice: do not attempt to implement such a data structure yourself

• Use transactional memory
 Speculate on the mutual exclusion (increased parallelism if no conflicts)

 Pay extra if a conflict happens

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

16

Fine-grained Locking

• Example: hash table with linked lists for buckets

• Tradeoff:
 (Expected) degree of

parallelism

 Number of individual

locks required

 Implementation complexity

• Can be combined with TM
 See next slide

...

NULL

NULL

NULL

NULL

NULL

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

17

Transactional memory

T0 T1 T2 T3 T0 T1 T2 T3

Concurrent (optimistic)
execution, no lock transfer

latencies (less lock
overhead)

Lock transfer latencies
(lock overhead) and
serialized execution

Ti
m

e

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

18

Lock hints in OpenMP

• Lock hints can help the Runtime to

choose the best implementation of a

lock.

• Hints are:
 omp_lock_hint_none

 omp_lock_hint_uncontended

 omp_lock_hint_contended

 omp_lock_hint_nonspeculative

 omp_lock_hint_speculative

• Hints can be combined with + or | .

C/C++
omp_lock_t lck;

omp_init_lock_with_hint(&lck);

#pragma omp parallel

{

omp_set_lock(&lck);

/* mutual exclusion here...*/

...

omp_unset_lock(&lck);

}

omp_destroy_lock(&lck);

C/C++
#pragma omp critical hint(...)

{

...

}

Tools for OpenMP

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

20

Data race

• Data Race: the typical OpenMP programming error, when:

 two or more threads access the same memory location, and

 at least one of these accesses is a write, and

 the accesses are not protected by locks or critical regions, and

 the accesses are not synchronized, e.g. by a barrier.

• Non-deterministic occurrence: e.g. the sequence of the execution of parallel loop

iterations is non-deterministic and may change from run to run

• In many cases private clauses, barriers or critical regions are missing

• Data races are hard to find using a traditional debugger

 Use the Intel Inspector XE or similar tool

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

21

Inspector XE

• Runtime detection of data races

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

22

Intel VTune Amplifier XE

• Performance Analyses for

 Serial Applications

 Shared Memory Parallel Applications

• Sampling Based measurements

• Features:

 Hot Spot Analysis

 Concurrency Analysis

 Wait

 Hardware Performance Counter Support

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

23

Performance tools - VTune

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

24

Performance tools - Score-P

Instrumentation wrapper

Adapters

Score-P measurement infrastructure

Online
interface

Event traces (OTF2)

Vampir Scalasca PeriscopeTAU

Hardware counter (PAPI, rusage)

Call-path profiles
(CUBE4, TAU)

MPI

Compiler
TAU

instrumentor
OPARI 2 User

UserPOMP2TAUCompiler

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

25

Performance Tools Score-P / Cube

1. Metric tree

2. Call tree

3. Topology tree

• All views are

coupled from left to

right:

1. choose a metric

• -> this metric is

shown for all

functions

2. choose a function

• -> the right view

shows the

distribution over

processes

31 2

Total execution

time is 32 sec.

Out of these 4.4

sec. are spent

in MPI_Init().

Out of these 1.1

sec is spent by

every process.

Advanced OpenMP Tutorial

Dirk Schmidl | IT Center RWTH Aachen University

PPAM 2017, September 10, 2017, Lublin, Poland

26

Performance Tools Score-P / Vampir

• The Timeline gives a detailed view of

all events.

• Regions and Messages of all

Processes and Threads are shown.

• Zoom horizontal or vertical for more

detailed information.

• Click on a message or region for

specific details.

Thank you for your attention!

Questions?

