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The	Cost	of	Data	Movement	

•  Data	movement	is	very	expensive	
2


•  Today	floa5ng	point	opera5ons	are	inexpensive	
In	167	cycles	can	do	2672	DP	Flops	
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Peak	FLOPS	 Peak	PFS	I/O	Bandwidth	

•  Speed	to	move	data	down	the	memory	hierarchy	is	stagnant	

•  Floa5ng	point	opera5ons	will	further	increase	



Perspec5ve	

The	scien5st:	
“Storage	technologies	are	advancing	[…]	and	it	is	really	not	clear	
at	all	[to	me]	that	especially	distributed	storage	plaGorms	would	
not	be	able	to	handle	[…]	petabyte	data	sets”	
	
The	computer	architect:	
“[…]	there	will	be	burst	buffers	on	the	DOE	machines	which	will	
give	applicaLons	much	faster	I/O	[…]”	
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Anonymous	Feedback	

Anonymous	Feedback	



Burst	Buffers	

Many	have	heard	about	it,			
few	have	seen	real	machines	with	it,			
even	fewer	have	ran	applicaLons	on	those	machines	…	
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Challenges		

•  Burst	Buffers	are	not	the	magic	I/O	silver	bullet	
§  I/O	conten5on	s5ll	a	problem	if	we	exceed	the	burst	buffer	
capability	

§  Burst	buffers	improve	offloading	bandwidth	but	do	NOT	help	
uploading	data	from	storage	for	analysis	and	visualiza5on	
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Integrate	I/O-awareness	in	Flux	Scheduler	
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I/O-aware scheduler I/O-ignorant scheduler 
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I/O-Ignorant	vs.	I/O-Aware	Scheduling	in	Flux	

I/O-Aware scheduling results in 100% of application 
time to be spent in computation 

Herbein	et	al.	Scalable	I/O-aware	Job	Scheduling	for	Burst	Buffer	Enabled	HPC	Clusters,	HPDC	2016.	



Challenges		

•  Burst	Buffers	are	not	the	magic	I/O	silver	bullet	
§  I/O	conten5on	s5ll	a	problem	if	we	exceed	the	burst	buffer	
capability	

§  Burst	buffers	improve	offloading	bandwidth	but	do	NOT	help	
uploading	data	from	storage	for	run5me	analysis	
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MD	Simula5ons	are	Alive	and	Kicking!		
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XSEDE SUs used by type of targeted science over the past 6 months (March 1, 
2016 - August 31, 2016) 

Four of the top 10 XSEDE users run molecular simulations (i.e., Schulten at 
UIUC, Feig at Michigan State U, Voth at U Chicago, and Case at Rutgers U)  



MD	Simula5ons	as	an	Ensemble	of	HPC	Jobs	
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A	MD	simulaNon	
comprises	of	hundreds	of	
thousands	of	MD	job	

By	Vincent	Voelz	-	Sent	to	the	uploader	personally,	CC	BY-SA	3.0,		
hYps://commons.wikimedia.org/w/index.php?curid=218912120	



Capturing	Rare	Events	

25


Transforma5ons:		
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Example of tools: 
•  DataSpaces (Rutgers U.) 
•  DataStager (GeorgiaTech) 



Requirements	to	Capture	Rare	Events	In	Situ		

•  We	want	to	capture	what	is	going	on	in	each	frame	without:	
§  Disrup5ng	the	simula5on	(e.g.,	stealing	CPU	and	memory	on	
the	node)	

§  Moving	all	the	frames	to	a	central	file	system	and	analyzing	
them	once	the	simula5on	is	over	

§  Comparing	each	frame	with	past	frames	of	the	same	job	
§  Comparing	each	frame	with	frames	of	other	jobs		
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Frames (or snapshots) of an MD trajectory: 

Frame	55	 Frame	60	 Frame	65	 Frame	70	 Frame	75	 Frame	80	



	Capturing	the	Transforma5ons	in	a	Structure	

Given	a	frame	of	an									
MD	job	at	5me	t	
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	Capturing	the	Transforma5ons	in	a	Structure	

Define	the	substructure:	
start	and	stop	amino	acids			
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	Capturing	the	Transforma5ons	in	a	Structure	
Drop	all	but	not	the	backbone	
atoms	of	the	structure	(Cα	atoms)		
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	Capturing	the	Transforma5ons	in	a	Structure	
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		λmax	Compute	largest	eigenvalue		

Cαi		

Cαj		

Build	the	substructure	
Euclidean	Distance	Matrix	(D)	



	Capturing	Movements	between	Structures	
Drop	all	but	not	the	backbone	
atoms	of	the	two	structure			
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	Capturing	Movements	between	Structures	
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	Capturing	Movements	between	Structures	
Measure	the	distance	
between	Cαj	and	Cβi		

Build	a	biparNte	distance	matrix	by	
comparing	two	substructures	

i

j

		λmax	Compute	largest	eigenvalue		

Cβi		Cαj		 d



Proxy	for	Rare	Events	
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Frames of an MD job: 
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λ60 λ65 λ70 λ75 λ85 

Frames of an MD job: 
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λ60 λ65 λ70 λ75 λ85 

Frames of an MD job: 
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Frames of an MD job: 

Frame	55	 Frame	60	 Frame	65	 Frame	70	 Frame	75	 Frame	80	



Proxy	for	Rare	Events	

42 

λ60 λ65 λ70 λ75 λ85 

Frames of an MD job: 
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Proxy	for	Rare	Events	
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Proxy	for	Rare	Events	
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λ60 λ65 λ70 λ75 λ85 

Frames of an MD job: 

Frame	55	 Frame	60	 Frame	65	 Frame	70	 Frame	75	 Frame	80	

λ55 

Can	the	distance	between	two	max	eigenvalues	serve	as	a	proxy	
for	distance	between	the	two	associated	conforma2ons?	



Reasons	to	Love	Symmetric	Matrices	

•  Euclidean	distance	matrix	D	is	symmetric		
•  Eigenvalues	of	symmetric,	real	matrices	

are	stable	
§  Small	perturba5ons	of	D	result	in	only	

small	changes	in	the	eigenvalues	
§  Euclidean	distance	matrix	is	insensi5ve	

to	rigid	transforma5on	
•  Use	only	largest	eigenvalue	in	distance	matrix		

λmax	=		λ1	<	λ2	<	λ3	<	λ4	<	λ5	=		λmin	
λ1	+	λ2	+	λ3	+	λ4	+	λ5	=	0	
λ1	>>	λ2	~	λ3	~	λ4	~	0	
λmax	=		λ1	~	-	λ5	=		-	λmin	

α-carbon	

α-
ca
rb
on

	

Can	the	distance	between	two	max	eigenvalues	serves	as	a	proxy	
for	distance	between	the	two	associated	conforma2ons?	

“In-Situ	Data	Analysis	and	Indexing	of	Protein	
Trajectories,”	Travis	Johnston,	Buyu	Zhang,	Adam	Liwo,	
Silvia	Crivelli,	and	Michela	Taufer.	JCC	2017.	



Proxy	for	Rare	Events	

46 

λ60 λ65 λ70 λ75 λ85 

Frames of an MD job: 

Frame	55	 Frame	60	 Frame	65	 Frame	70	 Frame	75	 Frame	80	

λ55 

Yes,	the	distance	between	two	max	eigenvalues	serves	as	a	proxy	
for	distance	between	the	two	associated	conforma2ons!	



Mapping	Largest	Eigenvalues	to	Structures		
PDB dataset: 3,197 different proteins including 22,898 helices and 32,894 
strands  

Cα atoms  

Cα atoms  Cα atoms  

22,898 helices  

32,894 strands  
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Mapping	Largest	Eigenvalues	to	Structures		

Cα atoms  
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Mapping	Largest	Eigenvalues	to	Structures		

Cα atoms  
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Case	Study	I:	2MQ8	Protein	

Frame	7686	 Frame	8925	

•  Canonical	simula5on	of	2MQ8	protein	including	both	α	helices	
and	β	strands	
§  Aser	~9M	steps	α	helices	pack	5ghter	and	change	into	β	strands	

Can	the	eigenvalue	analysis	capture	the	conforma2onal	change?	
50	



Case	Study	I:	2MQ8	Protein	
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Compute	largest	eigenvalue	of	3rd	strand	(10	amino	acids)	for	
each	trajectory	frame		



Case	Study	I:	2MQ8	Protein	
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Compute	largest	eigenvalue	of	3rd	strand	(10	amino	acids)	for	
each	trajectory	frame		



Case	Study	I:	2MQ8	Protein	
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Compute	largest	eigenvalue	of	3rd	strand	(10	amino	acids)	for	
each	trajectory	frame		



Case	Study	II:	Capturing	Movement	of	α-helices	
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Can	the	eigenvalue	analysis	capture	the	movement	of	helices	?	

Capture	movement	of	structures	with	respect	to	each	other	

1330 

1330 1360 1390 



Case	Study	II:	Capturing	Movement	of	α-helices	

Monitor	largest	eigenvalue	of	en5re	protein	



Case	Study	II:	Capturing	Movement	of	α-helices	

Something	is	changing	

Monitor	largest	eigenvalue	of	en5re	protein	



Case	Study	II:	Capturing	Movement	of	α-helices	

Individual	α-helices	(Helix	1,	Helix	2,	and	Helix	3)	appear	stable	

Monitor	largest	eigenvalue	of	single	helices	



Case	Study	II:	Capturing	Movement	of	α-helices	

Monitor	largest	eigenvalue	of	bipar5te	distance	matrix		

First	and	second	α-helices	appear	stable;	third	helix	moves	



1330 

1360 

1390 

Case	Study	II:	Capturing	
Movement	of	α-helices	

Large	rela5ve	change	between	
two	pairs	of	α-helices	



“Storage	technologies	are	advancing	[…]	and	it	is	really	not	clear	
at	all	[to	me]	that	especially	distributed	storage	plaGorms	would	
not	be	able	to	handle	[…]	petabyte	data	sets”	

	 	 	 	 	 	 	 	Anonymous	Feedback	
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Yes, new technologies will be able to handle 
data at the extreme scale but only if we 

integrate new software paradigms. 
I/O-aware schedulers are a must! 

In-situ and in-transit analysis are here to stay! 


