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The Cost of Data Movement

* Today floating point operations are inexpensive
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The Cost of Data Movement

* Floating point operations will further increase
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* Speed to move data down the memory hierarchy is stagnant
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Perspective

The scientist:

“Storage technologies are advancing [...] and it is really not clear
at all [to me] that especially distributed storage platforms would
not be able to handle [...] petabyte data sets”

Anonymous Feedback
The computer architect:
“[...] there will be burst buffers on the DOE machines which will
give applications much faster 1/0 [...]”

Anonymous Feedback
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Burst Buffers

Many have heard about it,
few have seen real machines with it,
even fewer have ran applications on those machines ...
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Challenges

* Burst Buffers are not the magic I/O silver bullet

= |/O contention still a problem if we exceed the burst buffer
capability
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Burst Buffer System
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Burst Buffer System
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PFS Bottleneck
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Integrate I/O-awareness in Flux Scheduler
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|/O-lgnorant vs. |/O-Aware Scheduling in Flux
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Challenges

* Burst Buffers are not the magic I/O silver bullet
= |/O contention still a problem if we exceed the burst buffer
capability
= Burst buffers improve offloading bandwidth but do NOT help
uploading data from storage for runtime analysis

22
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MD Simulations are Alive and Kicking!

XSEDE SUs used by type of targeted science over the past 6 months (March 1,
2016 - August 31, 2016)

Molecular Biosciences

Materials Research

Astronomical Sciences

Physics

Chemistry

Other Sciences
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Four of the top 10 XSEDE users run molecular simulations (i.e., Schulten at

UIUC, Feig at Michigan State U, Voth at U Chicago, and Case at Rutgers U) 53
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MD Simulations as an Ensemble of HPC Jobs

A MD simulation
comprises of hundreds of
thousands of MD job

By Vincent Voelz - Sent to the uploader personally, CC BY-SA 3.0, 24
https://commons.wikimedia.org/w/index.php?curid=218912120
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Capturing Rare Events

Transformations:

Movements:

25
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In-situ and In-transit Analysis

Analysis

Network Interconnect

I 1

Node 1 Node 2 Node 3

Node 1

Simulation Analysis

Example of tools:

« DataSpaces (Rutgers U.)
« DataStager (GeorgiaTech)

Simulation

26
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Requirements to Capture Rare Events In Situ

Frames (or snapshots) of an MD trajectory:

Frame 55

Frame 60 Frame 65 Frame 70 Frame 75 | Frame 80

* We want to capture what is going on in each frame without:

Disrupting the simulation (e.g., stealing CPU and memory on
the node)

Moving all the frames to a central file system and analyzing
them once the simulation is over

Comparing each frame with past frames of the same job
Comparing each frame with frames of other jobs

27
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Capturing the Transformations in a Structure

Given a frame of an
MD job at time t

28
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Capturing the Transformations in a Structure

Define the substructure:
start and stop amino acids

29
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Capturing the Transformations in a Structure

Drop all but not the backbone
atoms of the structure (C* atoms)




UNIVERSITY of DELAWARE

Capturing the Transformations in a Structure

Drop all but not the backbone
atoms of the structure (C* atoms)
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Capturing the Transformations in a Structure

Measure the distance
between C% and C%
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Capturing the Transformations in a Structure

Measure the distance Build the substructure

between C% and C% Euclidean Distance Matrix (D)
ce.

0 0 X X X X X]
ca[x 0 d X X X
Cai\;oo@ D= X d 0 X X X
d cé b X X X 0 X X
) X X X x 0 X
X X X X x 0

Compute largest eigenvalue % Amax
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Capturing Movements between Structures

Drop all but not the backbone
atoms of the two structure
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Capturing Movements between Structures

Drop all but not the backbone
atoms of the two structure
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Capturing Movements between Structures

Measure the distance
between C% and CP,

caj d CBi
<>
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Capturing Movements between Structures

Measure the distance
between C% and CP,

caj d CBi
<>
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Proxy for Rare Events

Frames of an MD job:

38
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Proxy for Rare Events

Frames of an MD job:
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Proxy for Rare Events

Frames of an MD job:
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Proxy for Rare Events

Frames of an MD job:
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Proxy for Rare Events

Frames of an MD job:
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Proxy for Rare Events

Frames of an MD job:
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Proxy for Rare Events

Frames of an MD job:

Can the distance between two max eigenvalues serve as a proxy
for distance between the two associated conformations?

44
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Reasons to Love Symmetric Matrices

Can the distance between two max eigenvalues serves as a proxy
for distance between the two associated conformations?

. . . . . a-carbon
* Euclidean distance matrix D is symmetric 0 % % % % % ox % % x x
* Eigenvalues of symmetric, real matrices X0 XXX x X XXX X
x x 0 x x x x x x x X
are stable lxoxox 0 x x x x x x x
= Small perturbations of D result in only 1 B
small changes in the eigenvalues Tlx x x x x x 0 x x x x
= Euclidean distance matrix is insensitive e e 9 XX
to rigid transformation X X x X x x x x x 0 x
. . . . X X x x x x x x x x 0
* Use only largest eigenvalue in distance matrix
Amax = A1<A2<A3<A4<A5= Amin
Al +A2+A3+A4+A5=0
AL>>A2~A3~A4~0 “In-Situ Data Analysis and Indexing of Protein
Amax = A1~-A5= -Amin Trajectories,” Travis Johnston, Buyu Zhang, Adam Liwo,

Silvia Crivelli, and Michela Taufer. JCC 2017.
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Proxy for Rare Events

Frames of an MD job:

Yes, the distance between two max eigenvalues serves as a proxy
for distance between the two associated conformations!

46
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Mapping Largest Eigenvalues to Structures
PDB dataset: 3,197 different proteins including 22,898 helices and 32,894

strands
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Mapping Largest Eigenvalues to Structures
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Mapping Largest Eigenvalues to Structures

8000

@@ Helix Eigenvalues
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Case Study I: 2MQ8 Protein

e Canonical simulation of 2MQS8 protein including both a helices
and B strands
= After “9M steps a helices pack tighter and change into B strands

Frame 7686 Frame 8925

AN/

A

Can the eigenvalue analysis capture the conformational change?

50
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Case Study |: 2MQS8 Protein

Compute largest eigenvalue of 3" strand (10 amino acids) for
each trajectory frame

2000 f

1500 |

1000 ¢ i
HA‘L ,uﬂ\

Largest Eigenvalue
S

0 SObO 10600 15(300 20000
Frame Number
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Case Study |: 2MQS8 Protein

Compute largest eigenvalue of 3" strand (10 amino acids) for
each trajectory frame

T RH Alpha Helix
@9 Strand

1500

1000 ¢

Largest Eigenvalue

wun

o

o
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0 SObO 10600 15(300 20000 2 4 é 8 10 112 14 llﬁ
Frame Number Number of Amino Acids
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Case Study |: 2MQS8 Protein

Compute largest eigenvalue of 3" strand (10 amino acids) for
each trajectory frame

I

T RH Alpha Helix T J-
@9 Strand
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wun
o
o

0 SObO 10000 15000 20000 2 4 6 8 10 12 14 16
Frame Number Number of Amino Acids
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Case Study Il: Capturing Movement of a-helices

Capture movement of structures with respect to each other

Can the eigenvalue analysis capture the movement of helices ?

54
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Case Study II: Capturing Movement of a-helice |

Monitor largest eigenvalue of entire protein
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Case Study II: Capturing Movement of a-helice |

Monitor largest eigenvalue of entire protein
50000 | | Entire IProteiln. — _
70000| Something is changing

Largest Eigenvalue
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Case Study II: Capturing Movement of a-helice |

Monitor largest eigenvalue of single helices

6000 Helix 1 | | Helix 2

5000}

Largest Eigenvalue

1200 1600 1200 1600 1200 1600

Individual a-helices (Helix 1, Helix 2, and Helix 3) appear stable
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Case Study II: Capturing Movement of a-helice |

Monitor largest eigenvalue of bipartite distance matrij
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Helix 1-Helix 3

Case Study Il: Capturing
Movement of a-helice
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“Storage technologies are advancing [...] and it is really not clear
at all [to me] that especially distributed storage platforms would
not be able to handle [...] petabyte data sets”

Anonymous Feedback

Yes, new technologies will be able to handle
data at the extreme scale but only if we
integrate new software paradigms.
I/O-aware schedulers are a must!
In-situ and in-transit analysis are here to stay!
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