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The	Brain	

1011	nodes	
(neurons)	

1015	connec-ons	
(synapses)	

Fault	tolerant	

Interac-ng	with	
environment	
and	other	
brains	

Self-learning	
Energy	
efficient	



Diesmann,	Proceedings	of	the	4th	Biosupercompu-ng	Symposium,	Tokyo,	2012		

K-Computer,	RIKEN	Lab,	12.6	MW	
Processor-to-Neural	Cell	Ra-o	1	:	20.000		

Simula-on	speed	1.520	:	1	compared	to	biological	real--me	



Neuromorphic	Compu-ng	
 

Implement some aspects of 

structure and function 

of biological circuits 

as analogue or digital images 

on electronics substrates 

 

Structure 

Cell Cores (Somas) – Networks (Axons and 

Dendrites) – Connections (Synapses) 

 

Function 

Local Processing – Communication – Learning 



Assets	of	NM	compu-ng	
Ø  Energy	efficiency	
Ø  Compactness	
Ø  Fault	tolerance	
Ø  Speed	
Ø  Configura-on	and	learning	replace	

programming	
Ø  Scalability	

Challenges	for	NM	Compu-ng	
	

Ø  Connec-vity	
Ø  Distributed	memory	concepts	
Ø  Configura-on	and	learning	

Larry	Smarr,	Calit	

Conven-onal	
compu-ng	is	
moving	away	
from	the	brain		



What	is	the	Goal	?	
future	compu-ng	based	on	

biological	informa-on	
processing	

understanding	biological	
informa-on	processing	

Two	fundamentally	different	modeling	approaches:	

•  NUMERICAL	MODEL	(Turing)	
represents	model	parameters	as	binary	numbers	

•  PHYSICAL	MODEL	(not	Turing)		
represents	model	parameters	as	physical	quan--es	
→	voltage,	current,	charge	(like	the	biological	brain)	

can	be	
combined	to	
form	a	hybrid	
system	

need	model	system	to	test	ideas	



1X =l 2X =l 3X =l

1W =l 2W =l
Nl=W

Nl=X

Output	layer		Input	layer	

Inner	layers		

Ar-ficial	Neuronal	Networks	
ignore	-me	evolu-on	….	

Here	:	local,	no	recurrency					feed-forward	

CAT	



Time	and	temporal	integra-on	

h_ps://upload.wikimedia.org/wikipedia/commons/0/0a/Temporal_summa-on.JPG	

Spike	



What	is	-me	(spiking	...)	good	for	?	
	
Ø  Sparse	informa-on	coding	by	-me	correla-ons	
Ø  Short	term	spike	based	synap-c	plas-city	(STP)	
Ø  Spike--ming-dependent	plas-city	(STDP)	
Ø  Temporal	noise	(stochas-city)	based	compu-ng	

Ø  Energy	efficiency	
Ø  Computa-onal	advantages	



Digital	
	

•  Discrete	values	of	physical	variables	
•  Computa-on	by	Boolean	algebra	
•  One	wire	one	bit	of	informa-on	
•  Signal	restored	acer	gate	
	

Analog	
	

•  Con-nuous	values	of	physical	variables	
•  Computa-on	by	component	physics	
•  One	wire	many	bits	of	informa-on	
•  Signal	not	restored	acer	stage	
	

Nature	/	mixed-signal	
• 	Local	analogue	computa-on	
• 	Binary	communica-on	by	spikes	
• 	Signal	restora-on	



Large-scale	Neuromorphic	Compu-ng	–	compare	
	
	

Ø  Commodity	microprocessors 	SpiNNaker,	HBP	 	 	Soc-binary-code	
Ø  Custom	fully	digital	 	 	 	TrueNorth,	IBM 	 	Hard-binary-code	
Ø  Custom	Mixed-Signal	 	 	 	BrainScaleS,	HBP 	 	Physical	model	
		
Anything	in	common	?	
	

+	Massively	parallel	(close	to	perfect	weak	scaling)	
+	Asynchronous	communica-on	
+	Configurability	
-	Limited	flexibility	and	complexity		in	neural	models	
	

	

COMPLEMENTARITY	OF	APPROACHES	ESSENTIAL	!	



Click to edit Master title style 

• Click to edit Master text styles 

–  Second	level	
•  Third level 

–  Fourth level 

HBP Neuromorphic Computing Concepts 

PHYSICAL	MODEL	SYSTEM	
	

Local	analog	compu-ng	with	4	Million	neurons	and	
1	Billion	synapses	–	binary,	asynchronous	

communica-on	–	x	10	000	accelerated	emula-on	
	

Loca-on	:	Heidelberg	(Germany)	

MANY-CORE	NUMERICAL	MODEL	SYSTEM	
	

0.5	–	1	Million	ARM	processors	–	address-based,	small	packet,	
asynchronous	communica-on	–	real--me	simula-on	
	

Loca-on	:	Manchester	(UK)	



ConnecTng	many	cheap	processors	by	spike-opTmized	network	

A	dras-c	approach	to	weak	scaling	

SpiNNaker	:	Many	Core	System	

•  	18	ARM	968	Cores	per	chip	
•  	Integer	Arithme-c	
•  	200	MHz	Processor	Clock	
•  	Shared	system	RAM	on	die	

•  128	Mbyte	SDRAM	stacked	on	die	
•  Each	Chip	6	bi-direc-onal	links	
•  6	million	spikes	/	s	/	link	
•  Real	Time	Simulator	



Imam,	Nabil,	et	al.	"Implementa-on	of	olfactory	bulb	glomerular-layer	computa-ons	
in	a	digital	neurosynap-c	core."	FronTers	in	neuroscience	6	(2012).	

Ø  Fully	custom,	fully	digital	design	
Ø  Exploit	econnomy	of	scale.	

28nm,	Samsung	
Ø  1	Million	hardwired	LIF	neurons	
Ø  256	Million	1-bit	sta-c	cross	bars	

(synapses)	
Ø  4096	neurosynaptc	cores	on	a	

64x64	grid	
Ø  Direct	axon-neuron	connec-vity	

only	internal	to	neurosynap-c	core	
Ø  5.4	Billion	transistors	/	chip	
Ø  No	local	plas-city		

IBM	Almaden	Group	



15	

Physical	Model	System	
Con-nuous	Time	Integra-ng	Neural	Cell	Membrane	
(+	non-linearity)	

Cm
dV
dt

= −gleak V −Eleak( )

Cm 

R = 1/gleak 

Eleak 

V(t) 
gleak [S] Cm [F] 

Biology(*) 10-8 10-10 
VLSI 10-6 10-13 

(*) Brette/Gerstner, J. Neurophysiology, 2005 

„Time“	is	imposed	by	internal	physics,	not	by	external	control	
€ 

cm
dV
dt

= −gleak V − E l( ) + pkgk V − Ex( )
k∑ + plgl V − E i( )

l∑
pk,l(t)  exponential onset and decay (post-synaptic potential shape) 
gk,l   0 to gmax (“weights”) 

effective membrane time-constant cm /gtotal is time-dependent 



A New VLSI Model of Neural Microcircuits Including Spike Time Dependent Plasticity, Johannes Schemmel, Karlheinz 
Meier, Eilif Muller, Proceedings of the 2004 International Joint Conference on Neural  Networks (IJCNN'04),  IEEE Press, 
pp. 1711-1716, 2004 

Implementa-on	example	with	synap-c	inputs	and	neuron	non-linearity	
mixed-signal	:	analog	cores,	binary	communica-on	



1st	genera-on	BrainScaleS	Chip	
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Ø  180nm	CMOS	technology	
Ø  10x5	mm	die	size	
Ø  512	AdeX	neurons	
Ø  100.000	plas-c	synapses	
Ø Up	to	16.000	synap-c	inputs	per	neuron	
Ø  Short	term	depression	and	poten-a-on	
Ø  Spike--ming-dependent	plas-city	

Ø  X10.000	accelera-on	w.r.t.	real--me	
Ø Wafer	scale	integra-on	





Physical Model, local 
analogue computing, 

binary continuous time 
communication 

 

Wafer-Scale Integration 
of 200.000 neurons and 
50.000.000 synapses on 

a single 20 cm wafer 

 

Short term and long term 
plasticity, 10.000 faster 

than real-time 

Wafer-scale	integraTon	of	analog	neural	networks,	J.	Schemmel,	J,	Fieres	and	K.	Meier	
In	:	Proceedings	of	IJCNN	(2008),	IEEE	Press,		431		



Configura-on	Space	40	MB	for	a	full	Wafer	



Hardware-In-the-Loop 



Conven-onal	Computer	
calibra-on,	learning,	

virtual	environment,	data	

Read	

Configure,	load	

Neuromorphic	
Machines	



4	Applica-on	Examples	
	
-  Feed-forward,	deep,	spiking	network	(determinis-c)	

-  Boltzmann	machine,	stochas-c	compu-ng	(stochas-c)	

-  Reverse	engineered	biological	circuit	with	learning	(supervised)	

-  Reverse	engineered	biological	circuit	with	learning	(unsupervised)	



Sebas-an	Schmi_	et	al.,	accepted	ISCAS	2017	

Feed-forward,	rate-based.	4-layer	spiking	network	
MNIST	classifica-on	on	a	physical	model	machine	

performance	before	and	acer	hardware	in-the-loop	learning		



MNIST	classifica-on	on	a	physical	model	machine	
Neuronal	firing	ac-vity	acer	hardware	in-the-loop	learning		

input	 2	x	hidden	

label	



Boltzmann	Machines	
	

Networks	of	symmetrically	
connected	stochas-c	nodes	k	
	

State	of	nodes	described	by	
vector	of	binary	random	
variables	zk	(0,1)	
	

Probability	for	state-vector	
converges	to	a	target		
Boltzmann-distribu-on	
	
	
With	an	energy	func-on	

WHAT	FOR	?	Learn	internal	stochas-c	model	of	input	space	–	Generate	or	discriminate	



Stochas-cally	modulated	firing	probability	

Determinis-c	firing	

M.	A.	Petrovici,	J.	Bill,	I.	Bytschok,	J.	Schemmel,	and	K.	M.:	
Stochas-c	inference	with	spiking	neurons	in	the	high-conductance	state.	Physical	Review	E	94,	2016	

Stochas-city	from	
	
Ø  External	noise	source	
Ø  Internal	noise	source	
Ø  Ongoing	network	ac-vity	



LEARNING	by	adjus-ng	LOCAL	connec-ons	in	BOLTZMANN	MACHINES	
	
-  Clamp	visible	units	to	par-cular	pa_ern	–	reach	thermal	equilibrium	
-  Incremement	interac-on	between	any	2	nodes	that	are	both	on	

-  Generate	from	stored	probability	distribu-on	
-  Infer	from	clamped	input	
	
	

Free	running	
„Dreaming“	
Genera-ve	

Inferring	
Input	incompa-ble	with	0	

Discrimina-ve	

M.	A.	Petrovici,	J.	Bill,	I.	Bytschok,	J.	Schemmel,	and	K.	M.:	Stochas-c	inference	with	
spiking	neurons	in	the	high-conductance	state.	Physical	Review	E	94,	2016	



Schmuker,	M.	et	al.,	"A	neuromorphic	network	for	generic	mul-variate	data	
classifica-on."	Proceedings	of	the	NaTonal	Academy	of	Sciences	(2014):	201303053.	

3	Layer	Spiking	Neuron	
Network	derived	from	
Insect	Olfactory	System	
	

L	I	:	Receptor	Neurons	
	

L	II	:	Decorrela-on	through	
lateral	inhibi-on	(Glomeruli)	
	

L	III	:	Associa-on	(Soc	WTA	
through	strong	inhibitory	
populatuions)	
	

Supervised	Learning	
Synap-c	Projec-ons	from	
Layer	2	to	Layer	3	

Example	for	insect	brain	derived	circuit	



Schmuker,	M.et	al.,	"A	neuromorphic	network	for	generic	mul-variate	data	
classifica-on."	Proceedings	of	the	NaTonal	Academy	of	Sciences	(2014):	201303053.	

Neuronal	firing	ac-vity	before	and	acer	learning	
	

Applica-on	in	generic	mul-variate	data	classifica-on	



Barn	owl	echoloca-on	by	phase	detec-on	
Local	on-chip	Spike-Time-Dependent-Plas-city	

T. Pfeil, A.-C. Scherzer, J. Schemmel and K. Meier, 
Neuromorphic Learning towards Nano Second Precision, 
Proceedings 2013 International Joint Conference on Neural Networks 
Dallas, TX, USA: IEEE Press, 2013, pp. 869-873. 

Barn	owl	derived	echoloca-on	by	precision	phase	detec-on	

Applica-on	of	
on-chip	learning	
via	spike--ming	
dependent	

plas-city	(STDP)	



FIGURE 5

100 J
1 Joule

10-4 J
0.1 milliJoule

10-8 J
10 nanoJoule

10-10 J
0.1 nanoJoule

10-14 J
10 femtoJoule

Energy Scales

E
F

F
I

C
I

E
N

C
Y

EnergyScales	
	
Energy	used	for	a	synap-c	
transmission	

	
Filling	the	Gap	
	

-  Typically	10.000.000	-mes	more	
energy	efficient	than	state-of-the	art	
HPC	(comparable	model)	

-  10.000	less	efficient	than	biology	

	

From	:	HBP	project	report	



Nature	+	
Real--me	 Simula-on	 Accelerated	

Model	

Causality	Detec-on	 10-4	s	 0.1	s	 10-8	s	

Synap-c	Plas-city	 1	s	 1000	s	 10-4	s	

Learning	 Day	 1000	Days	 10	s	

Development	 Year	 1000	Years	 3000	s	

12	Orders	of	Magnitude	

Evolu-on	 >	Millenia	 >	1000	
Millenia	 >	Months	

>	15	Orders	of	Magnitude	

TimeScales	



BrainScaleS-2	
65	nm	prototype	chip	in	the	lab	

2nd	genera-on	
	
Ø  Hybrid	plas-city	with	on-chip	

processor	(PPU):	on-chip	loops,	
-me-scales	from	ms	to	years	

	

§  Input	:	-ming	correla-ons,		rates,	
membrane	poten-als,	external	signals	

§  Change	:	synap-c	weights,	
neuromodula-on,	network	structure	

Ø  Structured	neurons	
	

•  Mul-compartment	neurons	
•  Ac-ve,	non-linear	dendrites,	

backpropaga-ng	APs	
•  NMDA,	Ca	plateau	poten-als	
	
IniTal	applicaTons	
•  Neural	backpropagaTon	learning	
•  HTM	temporal	predicTon	

Ø  Public	evalua-on	system	by	
mid-2018	

Ø  Full-size	prototypes	by	
mid-2020	



PPU	:	Measurement	Results	for	Mul-plica-ve	STDP	Rule	



Hebbian	:	 An--Hebbian	:	

Asymmetric	
Sensi-vity	:	

Bistable	
learning	:	

•  So	far	only	varia-ons	
of	the	STDP	PPU	code	

	
•  PPU	also	supports	:		

•  Gated	plas-city	
•  Reinforcement	
learning	

•  Neuromodula-on	
•  Re-wiring	on	the	fly	
•  structural	plas-city	
	
•  anything	you	can	
code	

•  any	-me	scale	

PPU	:	Measurements	demonstra-ng	variable	STDP	rules	



The decade of the dendritic NMDA spike. 
Antic SD, Zhou WL, Moore AR, Short SM, Ikonomu KD. 
J Neurosci Res. 2010 Nov 1;88(14):2991-3001. doi: 10.1002/
jnr.22444. Review., PMID: 20544831 
 

Biological	finding	
	

Three	spike	types	in	
structured	neurons	
	
Ø Na	spikes	perform	network	

communica-on	

Ø NMDA	plateau	poten-als	create	
non-linear	dendrites	

Ø  Ca	spikes	add	coincidence	
detec-on	between	basal	and	
distal	inputs	



N
M
DA

	

Ca	

Na	
NMDA	NMDA	

Dendrites:	bug	or	feature?,	Michael	Häusser	and	Bartle_	Mel,	2013	

Schemmel	et	al.,	arxiv 
1703.07286,	2017	

CA1	pyramidal	cell	

mul-plica-ve	interac-on	
between	proximal	and	distal	

integra-on	regions	

Ac-ve	dendrites	
From	biology	
to	abstrakTon	

to	CMOS	

Non-linear	dendri-c	NMDA	
integra-on	

and	Ca	coincidence	
in	CMOS	hardware	



Final Thoughts 
Ø   After 10 years of development available neuromorphic 

hardware systems have reached a high degree of maturity, 
in-use for non-expert use cases e.g. in established 
machine learning tasks 

 
Ø  2nd generation physical model systems start to offer very 

advanced accelerated local learning capabilities and 
exploitation of dendritic computation 

Goal : Build a continuously learning cognive machine  



Groundbreaking	Ceremony	
European	Ins-tute	for	Neuromorphic	Compu-ng	(EINC)	
Heidelberg	(Germany),	May	5th	2017	
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