MPI+X for Extreme Scale Computing

William Gropp
http://wgropp.cs.illinois.edu

PYNCSA

Some Likely Exascale Architectures

|Mai memory IM memory
(Low Capacity, High Bandwidth)
NN T
MC [TTTT MC LITT] (High Capacity,
LT o H L e [| Low Bandwidth)
—— cluster ——f H— i
MPE MPE
Group Group
S ——— 2 —)
=~ =+
I I 1024 64-bit RISC cores
Group Group 64MB on-chip SRAM
1024 programmable 10s
MPE MPE
T e H B CPE il Figure 2.1: Abstract Machine Model of an exascale Node Architecture
MC T MC T[T
[TT11 el e e

I Main memory I Main memory

Sunway TaihuLight From “Abstract Machine Adapteva Epiphany-V
« Heterogeneous ,Iz\/locrl].etls ?”d P]';Oxy - 1024 RISC
rchitectures for FOCESSOrS
processors (MPE, Exascale Computing . 22
CPE) " x32 mesh
Rev 1.1,” J Ang et al :
« No data cache * Very high power
efficiency

IINCSA -

MPI (The Standard) Can Scale Beyond Exascale

* MP| implementations already supporting more than 1M

processes
» Several systems (including Blue Waters) with over 0.5M independent cores

* Many Exascale designs have a similar number of nodes as
today’s systems
* MPI as the internode programming system seems likely

* There are challenges
« Connection management
» Buffer management
* Memory footprint
* Fast collective operations
* And no implementation is as good as it needs to be, but

* There are no intractable problems here - MP| implementations can
be engineered to support Exascale systems, even in the MPI-
everywhere

IYNCSA

Applications Still Mostly MPI-Everywhere

* “the larger jobs (> 4096 nodes) mostly use message
passing with no threading.” - BW Workload study,
https://arxiv.org/ftp/arxiv/papers/1703/1703.00924 .pdf

 Benefit of programmer-managed locality
* Memory performance nearly stagnant

 Parallelism for performance implies locality must be managed
effectively

 Benefit of a single programming system
 Often stated as desirable but with little evidence

« Common to mix Fortran, C, Python, etc.

 But...Interface between systems must work well, and often
don't
* E.g., for MPI+OpenMP, who manages the cores and how is that
negotiated?

IYNCSA

Why Do Anything Else?

* Performance
« May avoid memory (though usually not cache) copies

- Easier load balance
« Shift work among cores with shared memory

* More efficient fine-grain algorithms
* Load/store rather than routine calls

* Option for algorithms that include races (asynchronous
iteration, ILU approximations)

* Adapt to modern node architecture...

IYNCSA

SMP Nodes: One Model

.

/ MPI Process

N

\ MPI Process

' MPI Process

77

: MPI Process

' MPI Process

: MPI Process

: MPI Process

K:MPI Process

N

\

Vs
.

MPI Process\:

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

APV ININNNN

MPI Process

Ve

.

’

MPI Process/:

IYNCSA

Classic Performance Model

es+rn
« Sometimes called the “postal model”
* Model combines overhead and network latency (s)

and a single communication rate 1/r for n bytes of
data

* Good fit to machines when it was introduced

* But does it match modern SMP-based machines?

* Let’s look at the the communication rate per process
with processes communicating between two nodes

IYNCSA

Rates Per MPI| Process

é * Ping-pong between 2
~~ = nodes using 1-16

< =
3 P = cores on each node
g yd = <Top is BG/Q, bottom
At — Cray XEG6
. *"Classic” model
= . predicts a single curve
= - rates independent of
= — the number of
3 = communicating
S —X processes

Why this Behavior?

*The T = s + r n model predicts the same
performance independent of the number of
communicating processes

* What is going on?
* How should we model the time for communication?

/:MPI Process D ;{ MPI Process\j
: MPI Process]\ MPI Process
: MPI Process }\x //{ MPI Process
: MPI Process]\ /[MPI Process
: MPI Process]/ MPI Process
: MPI Process }// \\{ MPI Process
: MPI Process]/ \[MPI Process
\MPI Process / \ MPI Process/

IYNCSA

Modeling the Communication

« Each link can support a rate r, of data
« Data is pipelined (Logp model)

 Store and forward analysis is different

*Overhead is completely parallel

* K processes sending one short message each takes the
same time as one process sending one short message

A Slightly Better Model

* For k processes sending messages, the sustained
rate is
* Min(Ryic-nics K Reorenic)
* Thus

*T=s+kn/min(Ryc.nic KReorenic)

*Note if Ry c.nic IS very large (very fast network), this
reduces to
*T=s+kn/(kRcorenic) = S + N/Reorenic

IYNCSA

Two Examples

« Two simplified examples:
Blue Gene/Q Cray XE6

Aﬂ Node Node

* Note differences:
« BG/Q : Multiple paths into the network
« Cray XEG6: Single path to NIC (shared by 2 nodes)
* Multiple processes on a node sending can exceed the available

bandwidth of the single path

IYNCSA

The Test

* Nodecomm discovers the underlying physical topology

* Performs point-to-point communication (ping-pong) using 1
to # cores per node to another node (or another chip if a
node has multiple chips)

* Outputs communication time for 1 to # cores along a single
channel
* Note that hardware may route some communication along a longer
path to avoid contention.
* The following results use the code available soon at
* https://bitbucket.org/william gropp/baseenv

IYNCSA

How Well Does this Model Work?

 Tested on a wide range of systems:
* Cray XE6 with Gemini network
* IBM BG/Q
* Cluster with InfiniBand
e Cluster with another network

* Results Iin

* Modeling MPI Communication Performance on SMP

Nodes: Is it Time to Retire the Ping Pong Test
W Gropp, L Olson, P Samfass

» Proceedings of EuroMPI 16
* https://doi.org/10.1145/2966884.2966919

* Cray XEG results follow

IYNCSA

Cray: Measured Data

I\
i\

—~e~ e~~~ e~~~

TCOOCOTOCOCOOOCOA0O0000 |

ppppppppp0123456
AANNTNONOO A

PTI98 0 008

////////
,,,___,
<
N[
N
i

10°

N

10° 10* 10
message length [bytes]

102

10t

10°

o

—
o
—

(<)) [ee] ~ O

o o o
— — —

[puodas/sa1Aq] yipimpueq aAI11D3))a a1ebaibbe

10

IYNCSA

Cray: 3 parameter (new) model

| e A BT E
L\ Tlacancdddddelll B
\\ |
N .

//// . 40

AN 5
AN 5
AN
g

—l

[puod3as/sa1Aq] yipimpueq aAI303)40 aiebalbbe

IYNCSA

message length [bytes]

Cray: 2 parameter model

[puodas/sa1Aq] yipimpueq aAI11D3))a a1ebaibbe

| ///M//z/— ’ muwmmmmmwmmmmmmmu
N 1158dd 15
e / 1999999) |
LN
R .
/%// |
NN
N\)
L z_i E
AN
N
///// 'S
N
Vi
N ks
AN\ “

message length [bytes]

IYNCSA

Notes

* Both Cray XE6 and IBM BG/Q have inadequate
bandwidth to support each core sending data

along the same link

» But BG/Q has more independent links, so it is able to sustain a
higher effective “halo exchange”

Ensuring Application Performance and Scalability

« Defer synchronization and overlap communication
and computation
* Need to support asynchronous progress
* Avoid busy-wait/polling

* Reduce off-node communication
 Careful mapping of processes/threads to nodes/cores

* Reduce intranode message copies...

IYNCSA

What To Use as X in MP| + X?

* Threads and Tasks
* OpenMP, pthreads, TBB, OmpSs, StarPU, ...

« Streams (esp for accelerators)
* OpenCL, OpenACC, CUDA, ...

* Alternative distributed memory system
« UPC, CAF, Global Arrays, GASPI/GPI

* MP| shared memory

IYNCSA

X =MPI (or X = @)

* MPI 3.1 features esp. important for Exascale

» Generalize collectives to encourage post BSP (Bulk
Synchronous Programming) approach:
« Nonblocking collectives
* Neighbor — including nonblocking — collectives

 Enhanced one-sided

* Precisely specified (see “Remote Memory Access Programming
in MPI-3,” Hoefler et at, in ACM TOPC)

* http://dl.acm.org/citation.cfm?doid=2780584
* Many more operations including RMW

« Enhanced thread safety

IYNCSA

X = Programming with Threads

* Many choices, different user targets and
performance goals
 Libraries: Pthreads, TBB
» Languages: OpenMP 4, C11/C++11

*C11 provides an adequate (and thus complex)
memory model to write portable thread code

 Also needed for MPI-3 shared memory; see “Threads
cannot be implemented as a library”,
http://www.hpl.hp.com/techreports/2004/
HPL-2004-209.html

IYNCSA

What are the Issues?

*|sn’t the beauty of MPI| + X that MPI and X can be
learned (by users) and implemented (by
developers) independently?

* Yes (sort of) for users
* No for developers

 MPI and X must either partition or share resources
« User must not blindly oversubscribe
* Developers must negotiate

IYNCSA

More Effort needed on the “+”

MPI+X won’t be enough for Exascale if the
work for “+” is not done very well

« Some of this may be language specification:

« User-provided guidance on resource allocation, e.g., MPI_Info
hints; thread-based endpoints

* Some is developer-level standardization

« A simple example is the MPI ABI specification — users should
ignore but benefit from developers supporting

IYNCSA

Some Resources to Negotiate

« CPU resources * NIC resources
* Threads and contexts * Collective groups
 Cores (incl placement) * Routes
» Cache * Power
* Memory resources * OS resources
* Prefetch, outstanding load/ » Synchronization hardware
stores » Scheduling
* Pinned pages or equivalent * Virtual memory
NIC needs » Cores (dark silicon)
» Transactional memory
regions

* Memory use (buffers)

IYNCSA

Hybrid Programming with Shared Memory

* MPI-3 allows different processes to allocate shared
memory through MPI

« MPl_Win_allocate shared
» Uses many of the concepts of one-sided communication

 Applications can do hybrid programming using MPI or load/
store accesses on the shared memory window

« Other MPI functions can be used to synchronize access to
shared memory regions

« Can be simpler to program for both correctness and
performance than threads because of clearer locality
model

IYNCSA

A Hybrid Thread-Multiple Ping Pong Benchmark

* In a hybrid thread-multiple approach, what if t threads
communicate instead of t processes?

* The benchmark was extended towards a multithreaded version
where t threads do the ping pong exchange for a single process per
node (i.e., k=1)

 Results for Blue Waters (Cray XEG)

* The number t of threads and message sizes n are varied

* Results show
« Our performance model no longer applies ...
» Performance of multithreaded version is poor

 This is due to excessive spin and wait times spent in the MPI library
* Not an MPI problem but a problem in the implementation of MPI

IYNCSA

Results for Multithreaded Ping Pong Benchmark
Coarse-Grained Locking

aggregate effective bandwidth [bytes/second]

1010 |

10°}

108}

107}

10°}

10°

1

2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6

7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)

PILLILLILNLNE

13 pair(s)

*— 14 pair(s)

*— 15 pair(s)

*—& 16 pair(s)
L

pair(s) 7

pair(s)

12 pair(s)

10°

v

10° 10° 10*
message length [bytes]

10

Measurements for single-threaded
benchmark

10°

aggregate effective bandwidth [bytes/second]

1010 |

10°}

108}

107}

10°}

PILLILLILNINE

d—k

F—k

F—k
L

10°

1 pair(s) 7
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)

8 pair(s)

9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s)
13 pair(s)
14 pair(s)
15 pair(s)
16 pair(s)

v

10° 10° 10*
message length [bytes]

10° 10* 10

10°

Measurements for multi-threaded
benchmark

Results for Multithreaded Ping Pong Benchmark
Fine-Grained Locking

aggregate effective bandwidth [bytes/second]

1010 |

10°}

108}

107}

10°}

10°

1

2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6

7 pair(s)
8 pair(s)
9 pair(s)
10 pair(s)
11 pair(s)

PILLILLILNLNE

13 pair(s)

*— 14 pair(s)

*— 15 pair(s)

*—& 16 pair(s)
L

pair(s) 7

pair(s)

12 pair(s)

10°

v

10° 10° 10*
message length [bytes]

10

Measurements for single-threaded
benchmark

10°

aggregate effective bandwidth [bytes/second]

1010 |

10°}

108}

107}

PILLILLILIINL

d—k

F—k

F—k
L

1 pair(s) 7
2 pair(s)
3 pair(s)
4 pair(s)
5 pair(s)
6 pair(s)
7 pair(s)

8 pair(s)

9 pair(s)
10 pair(s)
11 pair(s)
12 pair(s) §
13 pair(s)
14 pair(s)
15 pair(s)
16 pair(s)

v

102 10° 10*
message length [bytes]

10

10°

Measurements for multi-threaded
benchmark

Implications For Hybrid Programming

* Model and measurements on Blue Waters suggest that if a
fixed amount of data needs to be transferred from one
node to another, the hybrid master-only style will have a
disadvantage compared to pure MPI

* The disadvantage might not be visible for very large
messages where a single thread (calling MPI in the
master-only style) might be able to saturate the NIC

* In addition, a thread-multiple hybrid approach seems to be
currently infeasible because of a severe performance
decline in the current MP| implementations

« Again, not a fundamental problem in MPI; rather, an example of the
difficulty of achieving high performance with general threads

IYNCSA

Lessons Learned

 Achieving good performance with hybrid parallelism
requires careful management of concurrency, locality

 Fine-grain approach has potential but suffers in practice;
coarse-grain approach requires more programmer effort
but gives better performance

 MPI+MPI| and MPI+OpenMP both practical

« Concurrent processing of non-contiguous data also
important (gives advantage to multiple MPI processes;
competes with load balancing

* Problem decomposition and (hybrid) parallel
communication performance are interdependent, a holistic
approach is therefore essential

IYNCSA

More Challenges For Extreme Scale Systems

« Simple MPI everywhere models hide important performance issues
» Impacts algorithms - ex SpMV

 MPI implementations don'’t take nodes into account

* Impacts memory overhead, data sharing
* Process topology - Cart_create wrong API| - ex nodecart

* File I1/O bottlenecks

« Metadata operations impact scaling, even for file/process (or should it be
file per node?)

« Need to monitor performance; avoid imposing too much order on
operations - ex MeshlO
« Communication synchronization
« Common “bogeyman” for extreme scale
« But some of the best algoriitms use, e.g., Allreduce
» Reorder operations to reduce communication cost; permit overlap
« Ex scalable CG algorithms and implementations

IYNCSA

Node-Aware Sparse Matrix-Vector Product

« Sparse matrix-vector TAPSpMV Communicatio
products the core to many - -
algorithms o T o p

* E.g., in Krylov methods and in 7w
stencil application) 5

* “Good” mappings of B
rocesses tonodesfor T

ocali% a:180 meabn that tdhe A KO WOt S I L T R W
same dala may be neede Number intra-node Size intra-node
for different processes on — =

the Same nOde e » seesopel SPMV = TAPSp
 Can significantly improve

performance by trading ﬁ’\\
Intra-node for internode /\

S

.

=
S
T

communication... hanl T
* Work of Amanda Bienz and L Y
Luke Olson Number inter-node Size inter-node

IYNCSA

MPI Process Topology: The Reality

* MPI provides a rich set of

Comparison of Process Mappings

routines to allow the MPI — e
implementation to map | = cart 4k
processes to physical 700R0e R
hardware 6.00E+08 etk

 But in practice, behaves o
poorly or ignored (allowed by Soe-o0 =2
3
0

E+08

the standard)

» Halo exchange illustrates
 Cart uses MPI_Cart_create 200E+08

* Nc is a user-implemented version ; y,e.08 \ N

that taeks noes into account

o . 0.00E+00
Nc is about 2x as fast 094 4096 16384

* Note both have scaling problems Number of Processes
(the network topology)

E+08

IYNCSA

|O Performance Often Terrible

 Applications just assume |/

O is awful and can’t be -Wm

fixed PlasCom 4500 4500
CM
* Even simple patterns not T T 56 48
handled well |
» Example: read or write a . Mes_hio .Iibrary built to match
submesh of an N-dim mesh ~ application needs
at an arbitrary offset » Replaces many lines in app

* Needed to read input mesh with a single collective call
in PlasComCM. Total I/O . Meshio
time less than 10% for long httos-//aith /
science runs (that is < 15 ttps://github.com
hours) oshkosher/meshio

- But long init phase makes « Work of Ed Karrels
debugging, development hard

IYNCSA

Scalable Preconditioned Conjugate Gradient

Methods

* Reformulations of CG trade computation
for the ability to overlap communication

» Hide communication costs and absorb
noise to produce more consistent runtimes

* Must overlap allreduce with more matrix
kernels as work per core decreases and
communication costs increase

 Faster, more consistent runtimes in noisy
environments

* Effective for simpler preconditioners and
shows some speedups for more complex
preconditioners without modifications

» Work of Paul Eller, “Scalable Non-blocking
Preconditioned Conjugate Gradient
Methods”, SC16
http.//ieeexplore.ieee.org/document/
7877096/

2.0

1.8 NBP!

20k 40k 60k 80k 100k 120k 140k
Cores

2.0 Strong Scaling Test Speedups

Figure: 27-point Poisson matrices with
4k rows per core (top) and 5123 rows
(bottom)

IYNCSA

Summary

* Multi- and Many-core nodes require a new
communication performance model

* Implies a different approach to algorithms and increased
emphasis on support for asynchronous progress

* Intra-node communication with shared memory
can improve performance, but
 Locality remains critical

» Fast memory synchronization, signaling essential

* Most (all?) current MPI implementations have very slow intra-
node MPI_Barrier.

* Many algorithms, data structures, and
imglementations need to be re-examined for multicore
nodes

IYNCSA

Thanks!

* Philipp Samfass

 Luke Olson

« Pavan Balaji, Rajeev Thakur, Torsten Hoefler
« ExxonMobile Upstream Research

* Blue Waters Sustained Petascale Project, supported by the
National Science Foundation (award number OCI| 07—
25070) and the state of lllinois.

* Cisco Systems for access to the Arcetri UCS Balanced
Technical Computing Cluster

IYNCSA

