
Enabling PDE software
frameworks for exascale
PPAM 2017

September 2017Dominik
Göddeke

Overview

Tagcloud of DFG call SPP-EXA 2012/2015, my weighting (generated using www.wordle.net)

Hardware (r)evolution

Parallelism, specialisation and heterogeneity
. Visible on all architectural levels now already

. Fine-grained: SSE/AVX, GPU/MIC ‘threads’

. Medium: GPUs, MICs, MC-CPUs, NUMA within nodes

. Coarse: MPI between heterogeneous nodes
. Memory wall ever increasing limiter, despite NVM etc.
. Power is the root cause

Consequences
. Existing codes no longer run faster automagically
. Coordinated efforts needed to prepare simulation software for future systems
. In this talk: examples from Numerics and CSE for PDEs

Tombstone image shamelessly stolen from David Keyes

SPPEXA overview

DFG Priority Programme 1648: Software for Exascale Computing
. Largest (only?) HPC software initiative in Germany
. Stategically initiated, emphasis on both code

development and methodological innovations
. Two funding periods, 2013–2015 and 2016–2018
. Overall budget 20+ M EUR
. Includes dedicated training at MSc/PhD level,

dedicated software engineering practices,
and ‘built-in’ collaborations between funded projects

SPPEXA overview

Six research directions
. Computational algorithms
. System software
. Application software
. Data management and exploration
. Programming
. Software tools

13 projects in phase 1, 16 in phase 2
. Each addresses at least three areas,
. 4–7 co-PIs each at at least two sites
. Strong bi- and trilateral collaborations

The EXA-DUNE project

http://dune-project.org/

Dune

The EXA-DUNE project

Starting point # 1: DUNE
. Berlin, Freiburg, Heidelberg, Münster, . . . , 100+ man-years
. Open-source flexible software framework / DSL, MPI-only
. Dimension-independent, different mesh types and FEs, hierarchical local

refinement, separation mesh/linear algebra
. C++11, code generation, static polymorphism
. Main focus on flexibility and scalability through well-defined interfaces
. Applications: Navier-Stokes, Euler, Maxwell, elasticity, . . .

Starting point # 2: FEA(S)T
. Dortmund, Stuttgart
. Hardware-oriented numerics, e.g. mixed precision, locality
. Accelerators and multicores, node-level heterogeneity, MPI+X, . . .

The EXA-DUNE project

Project goal: Develop an open-source reusable and scalable software framework
for the efficient numerical solution of PDEs

. Maintain flexibility, user-friendlyness and maintainability

. Improve performance and scalability under the hood

. By novel implementational and numerical techniques

. Two-phase porous media apps: solute transport, CO2 sequestration, . . .

Nice starting point

. JUQUEEN (Jülich), 917 504 hyperthreads, MPI-only

Recent progress of the project

Enhanced node-level performance
. Integration of GPUs and Phi behind a suitable abstraction layer
. Vectorisation of matrix assemby for unstructured-grid low-order schemes
. Application of sum-factorisation techniques for matrix-free high-order

schemes (discontinous Galerkin)
. Combination of matrix-free and matrix-based solvers for flow and transport
. Hardware-aware preconditioning

Resilience and asynchrony
. Fault-tolerant multigrid
. ULFM-based protocol for local-failure-local-recovery scenarios
. Asynchronous abstraction layer based on C++ futures

P. Bastian et al., Software for Exascale Computing – SPPEXA 2013–2015, Springer

Recent progress of the project

Additional levels of parallelism
. Multiscale finite element methods
. Multilevel Monte Carlo and uncertainty quantification

P. Bastian et al., Software for Exascale Computing – SPPEXA 2013–2015, Springer

Example: SIMD over multiple elements, low-order

Example: sum factorisation for high-order DG

Example: combined matrix matrix-free scheme

Example: sum factorisation for high-order DG

Example: sparse linear algebra

. SELL-C-σ format [Kreutzer et al., SISC, 2014]

. Extension to DG block sizes via horizontal vectorisation

. Extension to blocked matrices, saves bandwidth for index arrays

Example: sparse linear algebra

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6 7 8

T
im

e
 p

e
r

D
O

F
 a

n
d

 C
G

 i
te

ra
ti
o

n
 (

n
s
)

DOFs / 1e6

MPI
MT

MT blocked

Tesla
MIC blocked

Tesla blocked

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e
 p

e
r

D
O

F
 a

n
d

 C
G

 i
te

ra
ti
o

n
 (

n
s
)

DOFs / 1e6

MPI
MT

MT blocked

Tesla
MIC blocked

Tesla blocked

. Stationary 3D diffusion, DG p = 1 and p = 3

. CG with point-Jacobi or block-Jacobi (precomputed inverses)

. Same format on all architectures

Fault tolerance and resilience

The resilience challenge

Some important observations
. More components at exascale⇒ higher probability of failure
. Active debates to sacrifice reliability for energy efficiency
. Nightmare scenarios of MTBF < 1 h
. More importantly: very interesting research question in applied math

Classical techniques
. Reliability in hardware (ECC protection etc.) too power-hungry
. Global checkpoint-restart too memory-intensive (and too slow)
. Triple modular redundancy too power-hungry, but: can be more

energy-efficient and faster for large fault rates

Not only our approach: ABFT

General concept: algorithm-based fault tolerance
. Exploit algorithmic properties to detect and correct faults
. Can be more efficient than middleware

In this talk: some ideas for multigrid
. Self-stabilisation properties
. Target scenarios: from bitflips to node loss
. As much ABFT as possible, as little CPR as necessary
. Asynchronous, exponentially reduced checkpointing
. Black-box smoother protection from bitflips

Self-stabilisation

Theorem (Self-stabilisation)
For single faults, multigrid is self-stabilising.

Qualitative proof:
. Realise that multigrid is a linear fixed-point iteration
. Assume no faults in data (matrix, discrete transfer operators)
. Consequence: contraction property of iteration operator holds
. Apply Banach’s Fixed Point Theorem: convergence for any initial guess
. Realise that fault is just restart with new initial guess

Problem solved. What happens quantitatively, i.e., not covered by numerics
textbooks?

Self-stabilisation

. Poisson problem −∆u = f on Ω = [0,1]2, Dirichlet BCs, Q2 FE, 1 M DOF

. V cycle geometric multigrid, residual-based convergence control

. Smooth problem: f = −∆(sin(πx) sin(3πy))

. Fault injection into some patch of fine grid iterate to emulate node loss

Single fault injection at different iterations

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

 0 2 4 6 8 10 12 14 16 18 20

Iteration

injection step 8
injection step 6
injection step 4
injection step 2

no injection

. Convergence (residuals)

. Always convergence as proven, at most 2x iterations

. Large jump: fault injection implies a weak singularity at ‘fault boundary’ (steep
change of curvature)

Repeated fault injection at different locations

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

 0 2 4 6 8 10 12 14 16 18 20

Iteration

injection step 6
injection step 4
injection step 2

no injection

. Fault injection at alternating locations after every third iteration

. Good: MG converges nonetheless; Bad: MG only converges after fault
injection has ended

. Indeed: MG only self-stabilising for infrequent faults

Resilient multigrid with minimised checkpointing

Main idea: explicitly exploit existing multigrid hierarchy
. Checkpoint: store last iterate on a coarser scale
. Restart: prolongate backup solution to fine scale
. Exploit exponentially decreasing data volume:

2d -fold savings per refinement level for conforming FEM

Checkpoint-to-memory
. One extra down cycle (no smoothing), asynchronously
. Fault-free performance barely impacted

Restart-from-memory
. Local prolongation on ‘backup rank’ or replacement node
. Implies P2P load imbalance instead of global sync as in CPR

Single fault injection and local repair

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

 0 2 4 6 8 10 12 14 16 18 20

Iteration

no injection
backup depth 0

backup depth -2
backup depth -4
backup depth -6

no correction

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

 0 2 4 6 8 10 12 14 16 18 20

Iteration

no injection
backup depth 0

backup depth -2
backup depth -4
backup depth -6

no correction

. Cyan plot corresponds to 4096x smaller checkpoint

. But no further restauration of convergence for faults in almost converged
solution

Local auxiliary solve with checkpointed initial guess

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

 0 2 4 6 8 10 12 14 16 18 20

Iteration

backup depth 0
backup depth -2
backup depth -4
backup depth -6

no correction

none -6 -4 -2 0

It
e
ra

ti
o
n
s

Backup depth

injection after iter 3
injection after iter 6
injection after iter 9

. Solve aux. problem on lost patch using Dirichlet data from neighbours

. Convergence perfectly restored, but more expensive

. But: we can use the backup as an initial guess (!)

. 1.5x–4x less local iterations depending on backup depth

Asynchronous checkpoints

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

 0 2 4 6 8 10 12 14 16 18 20

Iteration

age 1
age 2
age 3
age 4

. Backup depth 4 (256x), impact of checkpoint ‘age’

. Realistic delays: almost no impact

. Paves way for combination with next technique

Silent data corruption

Silent data corruption
. Soft transient faults⇒ wrong solutions, delayed convergence
. Sometimes noticeable a posteriori (divergence), mostly not
. Causes: radiation, smaller threshold voltage, silicon ageing, . . .

Core idea of our approach
. Use FAS (full approximation scheme) multigrid to increase robustness
. Based on nonlinear MG, so true approximation of the solution on each level

and not just a correction
. Linear case: numerically equivalent, less than one fine SPMV overhead per

cycle

FAS multigrid

FAS Multigrid prototype to solve Ahuh = fh

1 Smooth uh on Ωh with ν = 1, . . . ,4 Jacobi iterations
2 Compute rh = fh − Ahuh

3 Restrict residuum and solution on Ω2h: r̂2h = R2h
h rh, û2h = R2h

h uh
Update right hand side: r̂2h = r̂2h + A2hû2h

4 Solve A2hu2h = r̂2h

5 Correct solution on Ωh: uh = uh + Ph
2h(u2h − û2h)

6 Smooth uh on Ωh

Black-box smoother protection

Theoretical justification for the down-cycle
. Obvious: residual r converges to zero on finest grid
. Easy to prove: residual (monotonously) converges to zero on all grids

Theoretical justification for the up-cycle
. Slightly nontrivial proof: correction vector c converges (monotonously) to zero

on all grids

Consequence: good fault indicators
. Both readily available without additional computation
. Applicable to both GMG and AMG
. In parallel: purely local, per-process indicators and thresholds

Black-box smoother protection

Practical realisation after smoothing on level k
. Compute index set L of possibly faulty components of c or r by comparing

against level-specific threshold
. Extend by one (or few) layers of indices coupled by A
. Replace faulty components by unsmoothed values (down-cycle), or by

recomputed correction from (non-faulty) coarser correction, whichever is more
recent

. Adaptively update threshold with data from current cycle only

. Two initialisations: first fine grid residuum and fault-free coarsest grid
correction

. Scaled during level transfer with operator norm and/or tolerance factor

. Hierarchically coupled for F- and W-cycles

Checksum protection for transfer stage
Checksums

. Use identity 1T(Ax + y) = (1TA)x + 1Ty, precompute 1TA (column sums)

. Fault detection in Ax + y by three dot products

. More elaborate schemes: detect and correct errors

Combined approach
. Black-box smoother protection, checksums for the rest
. Walltime comparison, fault-free case, serial GMG
. FAS overhead 20 %, plus 10 % for FT

unprotected unprotected transfer stage smoothing stage FTMG
(MG) (FAS) (checksums) (new algorithm) (both)

time 35.49 43.02 45.23 44.76 46.18
factor 0.825 1 1.051 1.040 1.073
factor 1 1.212 1.274 1.261 1.301

Numerical experiments

no impact

additional iterations

divergence

0 20 40 60 80 100

15

16

17

18

19

20

21

22

23

24

25

26

27

28

32

40

0 20 40 60 80 100

15

16

17

18

19

20

21

22

23

24

25

26

27

28

32

40

. Representative test
problem:
anisotropic diffusion

. Impact on classic (top) and
fault-tolerant (bottom)
multigrid algorithms

. For cases in which
additional iterations are
necessary the distribution
of iteration numbers is
shown on the right side

. In the fault-free scenario
both algorithms need 14
iterations

Numerical experiments

V-cycle poisson dico andi andicore
fault-free #it 4 6 14 7

classic #it (div.) 4.225 (272) 6.268 (335) 15.111 (850) 7.466 (439)
ftmg #it 4.038 6.007 14.007 7.017

false-positives 13 21 27 25
worse 15 1 0 1

. Statistics for V-cycle, 4000 different fault scenarios per test case

. Our approach always converges

. Very few false positives, which almost never lead to better iterations for the
classic scheme

Performance results

 0

 10

 20

 30

 40

 50

 60

 70

 410 420 430 440 450

ru
n

ti
m

e
 i
n

 s

fault−free unprotected
full checksums

fault−free FTMG
FTMG

unprotected
Algo. 2 and 3

Summary

Summary of this talk

Acknowledgements

. EXA-DUNE colleagues

. PhD students: Mirco Altenbernd, Malte Schirwon, Dirk Ribbrock

. EXC SimTech and SPPEXA for funding

	Introduction and motivation
	SPPEXA
	The EXA-DUNE project
	Fault tolerance
	Self-stabilisation
	Resilient multigrid with minimised checkpointing
	Silent data corruption

	Summary

