

University of Stuttgart Germany

Overview

Tagcloud of DFG call SPP-EXA 2012/2015, my weighting (generated using www.wordle.net)

Hardware (r)evolution

Parallelism, specialisation and heterogeneity

- Visible on all architectural levels now already
 - Fine-grained: SSE/AVX, GPU/MIC 'threads'
 - Medium: GPUs, MICs, MC-CPUs, NUMA within nodes
 - Coarse: MPI between heterogeneous nodes
- Memory wall ever increasing limiter, despite NVM etc.
- Power is the root cause

Consequences

- Existing codes no longer run faster automagically
- Coordinated efforts needed to prepare simulation software for future systems
- In this talk: examples from Numerics and CSE for PDEs

Tombstone image shamelessly stolen from David Keyes

SPPEXA overview

DFG Priority Programme 1648: Software for Exascale Computing

- Largest (only?) HPC software initiative in Germany
- Stategically initiated, emphasis on both code development and methodological innovations
- Two funding periods, 2013–2015 and 2016–2018
- Overall budget 20+ M EUR
- Includes dedicated training at MSc/PhD level, dedicated software engineering practices, and 'built-in' collaborations between funded projects

SPPEXA overview

Six research directions

- Computational algorithms
- System software
- Application software
- Data management and exploration
- Programming
- Software tools

13 projects in phase 1, 16 in phase 2

- Each addresses at least three areas,
- 4-7 co-PIs each at at least two sites
- Strong bi- and trilateral collaborations

The EXA-DUNE project

P. Bastian, C. Engwer, D. Göddeke, O. Iliev, O. Ippisch, M. Ohlberger, S. Turek

http://dune-project.org/

The EXA-DUNE project

Starting point # 1: DUNE

- Berlin, Freiburg, Heidelberg, Münster, ..., 100+ man-years
- Open-source flexible software framework / DSL, MPI-only
- Dimension-independent, different mesh types and FEs, hierarchical local refinement, separation mesh/linear algebra
- C++11, code generation, static polymorphism
- Main focus on flexibility and scalability through well-defined interfaces
- Applications: Navier-Stokes, Euler, Maxwell, elasticity, ...

Starting point # 2: FEA(S)T

- Dortmund, Stuttgart
- Hardware-oriented numerics, e.g. mixed precision, locality
- Accelerators and multicores, node-level heterogeneity, MPI+X, ...

The EXA-DUNE project

Project goal: Develop an open-source reusable and scalable software framework for the efficient numerical solution of PDEs

- Maintain flexibility, user-friendlyness and maintainability
- Improve performance and scalability under the hood
- By novel implementational and numerical techniques
- Two-phase porous media apps: solute transport, CO₂ sequestration, ...

Nice starting point

Universität Stuttgart

Recent progress of the project

Enhanced node-level performance

- Integration of GPUs and Phi behind a suitable abstraction layer
- Vectorisation of matrix assemby for unstructured-grid low-order schemes
- Application of sum-factorisation techniques for matrix-free high-order schemes (discontinous Galerkin)
- Combination of matrix-free and matrix-based solvers for flow and transport
- Hardware-aware preconditioning

Resilience and asynchrony

- Fault-tolerant multigrid
- ULFM-based protocol for local-failure-local-recovery scenarios
- Asynchronous abstraction layer based on C++ futures

P. Bastian et al., Software for Exascale Computing - SPPEXA 2013-2015, Springer

Recent progress of the project

Additional levels of parallelism

- Multiscale finite element methods
- Multilevel Monte Carlo and uncertainty quantification

P. Bastian et al., Software for Exascale Computing - SPPEXA 2013-2015, Springer

Example: SIMD over multiple elements, low-order

Example: sum factorisation for high-order DG

- Exploit tensor product structure of base functions (and quadrature rules) to cleverly reorder operations
- Matrix free schemes can be implemented in O(n^{d+1}) instead of O(n^{2d}) operations per cell (polynomial order q and n=q+1)
- Algorithm by *Buis, Dyksen (1996)*
- Finite element application by e.g. *Melenk, Gerdes, Schwab* (2001), *Kronbichler, Korman* (2012)
- Memory demand per element is reduced since only 1D base functions need to be evaluated

Example: combined matrix matrix-free scheme

$$\nabla \cdot v = 0, \qquad v = -\frac{K}{\mu(c)}(\nabla p - \rho(c)g)$$
$$\partial_t(\Phi c) + \nabla \cdot (cv - D(v)\nabla c) = 0$$

- Operator splitting approach
- Flow: CCFV, two-point flux, AMG solver, RT₀ interpolation
- Transport:
 - Space: Weighted SIPG-DG (Di Pietro, Ern, Guerm. 2008)
 - Time: 2nd order explicit time stepping
 - Gauß-Lobatto tensor product basis
 - Under-integration of mass matrix (mass lumping)
 → diagonal matrix
 - Sum Factorization during explicit time stepping for matrix free computation

Example: sum factorisation for high-order DG

Example: sparse linear algebra

- SELL-C-σ format [Kreutzer et al., SISC, 2014]
- Extension to DG block sizes via horizontal vectorisation
- Extension to blocked matrices, saves bandwidth for index arrays

Example: sparse linear algebra

- Stationary 3D diffusion, DG p = 1 and p = 3
- CG with point-Jacobi or block-Jacobi (precomputed inverses)
- Same format on all architectures

Fault tolerance and resilience

The resilience challenge

Some important observations

- More components at exascale \Rightarrow higher probability of failure
- Active debates to sacrifice reliability for energy efficiency
- Nightmare scenarios of MTBF < 1 h
- More importantly: very interesting research question in applied math

Classical techniques

- Reliability in hardware (ECC protection etc.) too power-hungry
- Global checkpoint-restart too memory-intensive (and too slow)
- Triple modular redundancy too power-hungry, but: can be more energy-efficient and faster for large fault rates

Not only our approach: ABFT

General concept: algorithm-based fault tolerance

- Exploit algorithmic properties to detect and correct faults
- Can be more efficient than middleware

In this talk: some ideas for multigrid

- Self-stabilisation properties
- Target scenarios: from bitflips to node loss
- As much ABFT as possible, as little CPR as necessary
- Asynchronous, exponentially reduced checkpointing
- Black-box smoother protection from bitflips

Self-stabilisation

Theorem (Self-stabilisation)

For single faults, multigrid is self-stabilising.

Qualitative proof:

- Realise that multigrid is a linear fixed-point iteration
- Assume no faults in data (matrix, discrete transfer operators)
- Consequence: contraction property of iteration operator holds
- Apply Banach's Fixed Point Theorem: convergence for any initial guess
- Realise that fault is just restart with new initial guess

Problem solved. What happens quantitatively, i.e., not covered by numerics textbooks?

Self-stabilisation

- Poisson problem $-\Delta u = f$ on $\Omega = [0, 1]^2$, Dirichlet BCs, Q2 FE, 1 M DOF
- V cycle geometric multigrid, residual-based convergence control
- Smooth problem: $f = -\Delta(\sin(\pi x)\sin(3\pi y))$
- Fault injection into some patch of fine grid iterate to emulate node loss

Single fault injection at different iterations

- Convergence (residuals)
- Always convergence as proven, at most 2x iterations
- Large jump: fault injection implies a weak singularity at 'fault boundary' (steep change of curvature)

Repeated fault injection at different locations

- Fault injection at alternating locations after every third iteration
- Good: MG converges nonetheless; Bad: MG only converges after fault injection has ended
- Indeed: MG only self-stabilising for infrequent faults

Resilient multigrid with minimised checkpointing

Main idea: explicitly exploit existing multigrid hierarchy

- Checkpoint: store last iterate on a coarser scale
- Restart: prolongate backup solution to fine scale
- Exploit exponentially decreasing data volume: 2^d-fold savings per refinement level for conforming FEM

Checkpoint-to-memory

- One extra down cycle (no smoothing), asynchronously
- Fault-free performance barely impacted

Restart-from-memory

- Local prolongation on 'backup rank' or replacement node
- Implies P2P load imbalance instead of global sync as in CPR

Single fault injection and local repair

- Cyan plot corresponds to 4096x smaller checkpoint
- But no further restauration of convergence for faults in almost converged solution

Local auxiliary solve with checkpointed initial guess

- Solve aux. problem on lost patch using Dirichlet data from neighbours
- Convergence perfectly restored, but more expensive
- But: we can use the backup as an initial guess (!)
- 1.5x-4x less local iterations depending on backup depth

Asynchronous checkpoints

- Backup depth 4 (256x), impact of checkpoint 'age'
- Realistic delays: almost no impact
- Paves way for combination with next technique

Silent data corruption

Silent data corruption

- Soft transient faults \Rightarrow wrong solutions, delayed convergence
- Sometimes noticeable a posteriori (divergence), mostly not
- Causes: radiation, smaller threshold voltage, silicon ageing, ...

Core idea of our approach

- Use FAS (full approximation scheme) multigrid to increase robustness
- Based on nonlinear MG, so true approximation of the solution on each level and not just a correction
- Linear case: numerically equivalent, less than one fine SPMV overhead per cycle

FAS multigrid

FAS Multigrid prototype to solve $\mathbf{A}_h \mathbf{u}_h = \mathbf{f}_h$

- **1** Smooth \mathbf{u}_h on Ω_h with $\nu = 1, \ldots, 4$ Jacobi iterations
- **2** Compute $\mathbf{r}_h = \mathbf{f}_h \mathbf{A}_h \mathbf{u}_h$
- **3** Restrict residuum and solution on Ω_{2h} : $\hat{\mathbf{r}}_{2h} = \mathbf{R}_{h}^{2h}\mathbf{r}_{h}$, $\hat{\mathbf{u}}_{2h} = \mathbf{R}_{h}^{2h}\mathbf{u}_{h}$ Update right hand side: $\hat{\mathbf{r}}_{2h} = \hat{\mathbf{r}}_{2h} + \mathbf{A}_{2h}\hat{\mathbf{u}}_{2h}$
- **6** Correct solution on Ω_h : $\mathbf{u}_h = \mathbf{u}_h + \mathbf{P}_{2h}^h(\mathbf{u}_{2h} \hat{\mathbf{u}}_{2h})$
- **6** Smooth \mathbf{u}_h on Ω_h

Black-box smoother protection

Theoretical justification for the down-cycle

- Obvious: residual r converges to zero on finest grid
- Easy to prove: residual (monotonously) converges to zero on all grids

Theoretical justification for the up-cycle

• Slightly nontrivial proof: correction vector **c** converges (monotonously) to zero on all grids

Consequence: good fault indicators

- Both readily available without additional computation
- Applicable to both GMG and AMG
- In parallel: purely local, per-process indicators and thresholds

Black-box smoother protection

Practical realisation after smoothing on level k

- Compute index set \mathcal{L} of possibly faulty components of **c** or **r** by comparing against level-specific threshold
- Extend by one (or few) layers of indices coupled by A
- Replace faulty components by unsmoothed values (down-cycle), or by recomputed correction from (non-faulty) coarser correction, whichever is more recent
- Adaptively update threshold with data from *current cycle only*
- Two initialisations: first fine grid residuum and fault-free coarsest grid correction
- Scaled during level transfer with operator norm and/or tolerance factor
- Hierarchically coupled for F- and W-cycles

Checksum protection for transfer stage

Checksums

- Use identity $\mathbf{1}^{\mathsf{T}}(\mathbf{A}\mathbf{x} + \mathbf{y}) = (\mathbf{1}^{\mathsf{T}}\mathbf{A})\mathbf{x} + \mathbf{1}^{\mathsf{T}}\mathbf{y}$, precompute $\mathbf{1}^{\mathsf{T}}\mathbf{A}$ (column sums)
- Fault detection in **Ax** + **y** by three dot products
- More elaborate schemes: detect and correct errors

Combined approach

- Black-box smoother protection, checksums for the rest
- Walltime comparison, fault-free case, serial GMG
- FAS overhead 20 %, plus 10 % for FT

	unprotected (MG)	unprotected (FAS)	transfer stage (checksums)	smoothing stage (new algorithm)	FTMG (both)
time	35.49	43.02	45.23	44.76	46.18
factor	0.825	1	1.051	1.040	1.073
factor	1	1.212	1.274	1.261	1.301

Numerical experiments

- Representative test problem: anisotropic diffusion
- Impact on classic (top) and fault-tolerant (bottom) multigrid algorithms
- For cases in which additional iterations are necessary the distribution of iteration numbers is shown on the right side
- In the fault-free scenario both algorithms need 14 iterations

Numerical experiments

V-cycle	poisson	dico	andi	andicore
fault-free #it	4	6	14	7
classic #it (div.)	4.225 (272)	6.268 (335)	15.111 (850)	7.466 (439)
ftmg #it	4.038	6.007	14.007	7.017
false-positives	13	21	27	25
worse	15	1	0	1

- Statistics for V-cycle, 4000 different fault scenarios per test case
- Our approach always converges
- Very few false positives, which almost never lead to better iterations for the classic scheme

Performance results

Summary

Summary of this talk

Acknowledgements

- EXA-DUNE colleagues
- PhD students: Mirco Altenbernd, Malte Schirwon, Dirk Ribbrock
- EXC SimTech and SPPEXA for funding

