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Changing nature of science

Technology lessons and exponentials

Re-conceptualizing advanced computing

Thoughts on the future
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Other forces matter Higgs

Quantum mechanics spacetime gravity

http://www.preposterousuniverse.com
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Structure

Science

Data and processing
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The talent in data analytics have shifted from science to 
companies.  We can’t compete.

Astronomy researcher

Vectors
(1980s)

Mainframes MPPs
(1990s)

Clusters & Grids
(2000s)

Clouds, Big Data
and Devices
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Four computing capabilities

Three defining attributes …

… and their ratios determine viability

Exponentials are very deceptive
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Volume

Unit price

Market size

Market disruption

Performance/$

Societal impactFrozen here?
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Why can't we make them [computers] very 
small, make them of little wires, little elements 
– and by little, I mean little. For instance, the 
wires should be 10 or 100 atoms in diameter, 
and the circuits should be a few thousand 
angstroms across. Everybody who has analyzed 
the logical theory of computers has come to 
the conclusion that the possibilities of 
computers are very interesting – if they could 
be made to be more complicated by several 
orders of magnitude. 

Richard Feynman

December 29, 1959 

CV2F+ S
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Multiple, competing ecosystems

SoCs and mass specialization

CV2F+ S

IBM True North chip

4096 cores x 256 neurons
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1 TF IA-32 Pentium III cluster (Platinum)

1 TF IA-64 Itanium cluster (Titan) 

http://www.comrace.ro/Select.asp?Gr=0&prod=Intel
http://www.comrace.ro/Select.asp?Gr=0&prod=Intel
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Loci of airplane innovation shifted
• Capacity

• Range

• Safety

• Yield management

• Avionics

• Fuel efficiency

• Carbon composites

… but it has never stopped

Computing loci are also shifting
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Technical application complexity is rising

… along with multiple optimization axes

C, Fortran, 

C++, MPI, 

OpenMP

Python, Ruby, R

Cloud/Web 

Services

Technical and mainstream software 
development have diverged
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(e.g, Lustre)

Batch 

SchedulerHDFS (Hadoop File System)
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Item hierarchy (Amazon)

Attributes (Pandora)

Item similarity (Netflix)

User similarity (Walmart)

Social network (Linkedin)

Model based (HPC challenges and needs)



Big data and massive parallelism
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Requested compute and storage for ten years?

Logged onto a node and killed processes just to see what would happen?

Wished you could load containers rather than just applications?

Found your code performance limited by the I/O bandwidth of a Raspberry Pi?

Thought SAN was just a typo in a message meant for Sam? 

Asked your system for recommendations?

Wondered why R came after S and C doesn’t matter?
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Dominated by three areas

Enabled by technology changes
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Some of us are old enough to remember public timesharing …

Data centers built for Internet services

Infrastructure optimization at scale

Rise of deep learning
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It’s all about ratios …
• Cost, performance, capacity

Jim Gray’s four axes
• Networking

• Computation

• Storage

• Access

… and that is still driving change
• Modular building blocks

• Component integration

• Systemic resilience

• Cooling and power

• SDN and SDS, containers
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Latency

Bandwidth

Energy

Storage

Knowledge

Context



25
Software is eating the world – Marc Andreessen



Containerization (OS virtualization)

Software defined networks (SDNs)

Software defined storage

Cont

rol

Data

Meta

Data

Meta

Data

Meta
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Energy efficient sensing and computing

Cyber-physical systems

Intelligent storage

Real-time communication ecosystem

Multilevel and scalable security

Next-generation manufacturing paradigm

Insight computing
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100 picojoules can

Remember

We have to be more efficient
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Parallel distributed architecture

Low power (25W)

Small volume (1 liter)

Asynchronous

Analog computing

Integrated memory/computation

Intelligence via learning

Noisy components

Low speed operation

Spontaneously active

Mostly serial architecture

High power (100 MW) 

Large footprint (40M liters)

Synchronous

Digital computing

Separated memory/computation

Intelligence via programmed rules

Precise components

High speed operation

Passive unless instructed
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Accept inaccuracy/errors as the norm

Computation as an {un}biased sample

Many axes

Analog, noisy inputs
• Sensors

Analog, error tolerant outputs
• Multimedia, data classification

Multiple acceptable answers
• Web search, climate models
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Thank You


