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Success in Petascale computing: BG/Q Results

Implementing Exact-Exchange in CPMD
>99% Parallel Efficiency to over 6.2M threads
Studying Li-Air Batteries, 1736 atoms, 70Ry cuttof
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Success in Petascale computing: BG/Q Results

Cloud cavitation collapse

ACM Gordon Bell Prize 2013
14.4 PFLOP/S @73% of peak perf.

13 Trillion elements
6.4 M threads
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Success in Petascale computing: BG/Q Results

Mantle Simulations
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ACM Gordon Bell finalist 2015
97% of sustained scalability for
a fully implicit solver. 1.6M cores
3.2M MPI processes
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This talk is about Reaching Exascale and Beyond:

The Energy/Power Barrier and How Algorithmic
Re-engineering Can Open the Way

I © 2015 IBM Corporation
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Exascale Targets: Difficulties Along all Axes

Sustained Performance / $
50x improvement needed

3-4 technology generations

~5x more area of silicon expected

Expected. 50x more
compute pipelines Linear dimensions: 3x-4x

improvements expected

Ease of Use / Reliability Sustained Performance/Watt
Broad scientific impact 20x improvement needed
50x improvement needed

*Improvements relative to 2011/2012 BG/Q 20 PF/s systems
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Measuring performance in HPC:

Performance Projection BG/Q: 16.4 PF @ 8MW
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TOP SYSTEM AT GREEN500 LIST Green HPC
BGIQ
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P. Kogge et al: “Exascale Computing Study: Technolog

Challenges in Achieving Exascale Systems, DARPA-IP,

O, 2008

Exascale systems:

Projected Total Power (MWATTS)

- FPU to cost a fraction of total energy (16%)

- Total data movements: ~60%

Focus moves from MFLOPS to MFLOPS/WATT

Given a power budget target maximize
operations

www.green500.org: derived from
www.top500.org
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Measuring performance in HPC: A major step forward
The green way... MFLOPS/Watt: www.green500.org

~2.5x in 6 years wrt BG/Q only...
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We start to see an exponential behavior in the Green500. But is this

MFLOPS/Watt

really affecting the top line? 5 years ago: 2.1 GF/W, now 1.9 GF/W
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Measuring performance in HPC the Green way

= Main idea: run LINPACK on power optimized hardware...

= Hardware is power optimized for LINPACK specific tasks
— FLOP intensive calculations
— Heavy memory hierarchy utilization
— Heavy interconnect utilization

= Thus: if all goes well...\Ne can do more flops for each available watt

v But: Is this what Green computing is about?

v Real target: Total Energy Spent
v Can the FLOPS/WATT metric give a good indication?

© 2015 IBM Corporation
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FTTSE (Bekas-Curioni, EnaHPC, Hamburg, Sept, 2010)
= Energy aware performance metric

— tts: time to solution
— f(tts) a function of time to solution

. v.s. F/W
— F/W still promotes power hungry algorithms:

* Why: Flops and Watts are optimized separately

* Thus: Once a satisfactory power budget is achieved
then users tend to maximize sustained flops

 High sustained flops comes from algorithms that make
full use of the hardware

12 © 2015 IBM Corporation
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. v.s. F/W
— F/W is a “natural” green extension of the original F/S
metric

* Fix a certain benchmark (LINPACK: solution of dense
linear systems) and then compare machines flops per
waltt wrt. this benchmark.

— Moving to FFTSE demands for simultaneous minimization
of power consumption and time to solution:

* Architectures cannot any longer be measured against a
single benchmark! LINPACK is not enough.

* Instead: Collection of benchmarks (i.e. 7-13 Colella's
Dwarfs)

- Example: Optimize architecture for sparse computations,
; FFT's (heterogeneous chips?) © 2015 18M Gorporatin
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SOLVING DENSE SPD LINEAR SYSTEMS

Cholesky Decomposition:
If A is SPD: A=R'R

R is upper triangular. Then solving Ax=b becomes

x=A"b = (R'R)'b =R'R'b

Inverting (solving: back substitution) triangular matrices is cheap! O(n?)

But the Cholesky decomposition costs O(n?)

Observe: n=1M, already requires Exaflop like resources.

Can we do better? Can we accelerate?

© 2015 IBM Corporation
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DIVE IN THE PAST: ITERATIVE REFINEMENT

Consider the linear system: Ax = b and assume we have an initial “guess” x,
Compute the residual: r = b-Ax,
Solve for the residual: Ad=r
Update the solution: x,=x,+d

Repeat steps 1-3 if remainder is not small enough: ||r||, tol

What if steps 1-3 could be done in infinite precision (no rounding errors):

1. d=A'r=A'b-Ax,)
2, d=x-(A'A)x,=x-X,
3. x,=x,+tXx-X,=X

Thus, we would have a completely accurate result in 1 step!
But, round-off is inevitable. So, why does IR work?

ly “en h” i rina improvemen

© 2015 IBM Corporation
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MIXED PRECISION ITERATIVE REFINEMT
WHAT IF WE HAD FAST/LOW POWER/ HARDWARE AVAILABLE?

Consider two modes of machine precision:
v LOW PRECISION: LP
v" HIGH PRECISION: HP

Compute the Cholesky factorization: A=RTR. Cost: O(1/3n°)
Compute initial solution: R"(R x,) = b. Cost: O(n?)
Compute initial residual: r, =b - Ax . Cost: O(n?)

k=0

REPEAT

1. Solve for residual: R'Rd)=r, Cost: O(n?)

2. Update solution: X, = X, +d Cost: O(n)

3. Compute residual: r.,=b-Ax, Cost: O(n?)

4. k=k+1

UNTIL ||r,.,|| tol

Key properties:
1. Overall cost O(1/3n°). But performed in LOW PRECISION. Cost in HP is O(n?)
2. We can take great advantage of fast single precision hardware!

© 2015 IBM Corporation
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Mixed Precision IR: Does it converge?

Theory

Mixed Precision IR converges so long as the solver we use for a system Ay =

c satisfies for the
computed solution y’:

(A+€)y'=c, |IA'E|, <1

Indeed we can approximate a result in nearly full High Precision:
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Mixed Precision IR: Fast Low Precision

Consider two modes of machine precision:
v LOW PRECISION: LP
v" HIGH PRECISION: HP

1. Compute the Cholesky factorization: A=R"R. Cost: O(1/3n%)

We can take great advantage of very fast low precision hardware!
v Dominant cost O(1/3n3) is all in low precision
v Thus we can accelerate computations...
v" We benefit from reduced memory traffic (compare 4 bytes of IEEE single to
8 bytes for IEEE) double

So...what is the catch?
v Cost remains cubic! Intractable to solve large systems (very large n).
How about parallel?

v" Cholesky is well known to present difficulties in parallel scaling
© 2015 IBM Corporation
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WHY DOES IR: WORK?

Theory
Mixed Precision IR converges so long as the solver we use for a system

Ay = c satisfies for the computed solution y’:

(A+€)y'=c, |A' €|, <1

20-

Can we relax solver accuracy?

-
(%]
!

Can we use “dirty/noisy” solvers?

ITERATIONS
-t
=)

[4]

Answer: YES

"~ 400 SIZE OF MATRIX
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Using iterative solvers instead of Cholesky

e
v" The cubic complexity of standard Iterative Refinement stems
from the Cholesky decomposition

v" We saw that we could utilize a significantly less accurate solver

We propose:
"  Substitute the dense solver (Cholesky based) with an iterative one
"  For SPD linear systems this will be the Conjugate Gradient solver
v" Perform only a small (constant) number of CG steps, k<<n

" Total cost reduces from O(n%) ! O(kn?), for a small k

© 2015 IBM Corporation
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CG Based lterative Refinement

v" LOW PRECISION: LP
v" HIGH PRECISION: HP
v Let CG(A,y,k) be a procedure implementing k steps of CG in single
precision
*  Compute initial solution: x,=CG(A,b,k) Cost: O(kn?)
*  Compute initial residual: r,=b - Ax, Cost: O(n?)
* k=0
* REPEAT
*  Solve for residual: d,=CG(A,r k) Cost: O(kn?)
*  Update solution: X, = X +d Cost: O(n)
*  Compute residual: r.,,=b-Ax,, Cost: O(n?)
 k=k+1
*UNTIL ||r,,,|| tol
Key properties:

Dominant cost O(kn?). Performed in LOW PRECISION. Cost in HP is O(n?)
We can take great advantage of fast single precision hardware!

l © 2015 IBM Corporation
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CG IR: Does it work?

Dense matrix A (n=1000)

Residual Relative error
N : = : —n 10° : : : : :
10+ =B8—CG: 10 steps =B8—CG: 10 steps
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Cholesky IR v.s. CG IR: Accuracy

Matrix size n=1000. Varying condition numbers, cond(A)=100, 1000, 10000
CG steps: 100

RESIDUAL

Residual
—
o

| © 2015 IBM Corporation

—CG. cond(A)=100
=== Chol. cond(A)=100
=—CG. cond(A)=1000
=== Chol. cond(A)=1000
—CG. cond(A)=10000 |
=== ChOol. cond(A)=10000

lterations

Relative error

REL. ERROR

—CG. cond(A)=100
=== Chol. cond(A)=100
=—CG. cond({A)=1000
=== Chol. cond(A)=1000
—CG. cond(A)=10000 ||
=== Chol. cond(A)=10000
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Cholesky IR v.s. CG IR: Scaleout

' ' I I I I
10° 3 il GGz 32768 3
- wil= SCALAPACK: 32768/ 1
o CG: 49152 1
SCALAPACK: 49152 T

10° S, L ¢ 1

10 128 256 212 1024 2048
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Actual On Chip Measurements

Fewp. scale:

Power 7 chip has thermal sensors. Their readings can be calibrated to instantaneous
power consumption with quite small error (<5%) (C. Lefurgy et al, Hot Chips 2010)

26 © 2015 IBM Corporation



Costas Bekas. IBM Research - Zurich

Measuring Power Consumption: A Interactive Framework

- AME driver that collects sensor data and calculates power consumption

- An external tool, AMESTER, connects to the service processor of the
Power7 based server and gathers the readings. Resolution of 756ms
routinely achieved, potential for 1ms resolution is there. Power resolution
0.1Watts

- No load on the system CPU / no measurement noise

- User application can also communicate with AMESTER: Put tags at run
time

SENSOTs AME Driver

AMESTER

IBM Power7 power output

27 © 2015 IBM Corporation
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Power Consumption? Power7 system. H/\WW Power sensors
P
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Can we push for more?

J
Data Analytics. Working with Covariance matrices. Typically they exhibit a decaying

behavior away from the main diagonal. What if we make it banded? Converges!

300 7 . =

10 2751 ~{ — Total power [~ T O [ujnia.]jzaifi?u ] B

250 - TTRroCeROr ) oo I High precision solving [~

200 295 L - Memory 1 |- _ - __________—_——-—_———__

— Wemory 2
200 20 |-
S L] e e ittt el et Py B

o0 3 | .

=00 %3 195 b _____

400 = 100 o m m o e

. i

25
100 0 |
200 400 600 a00 1000 {|] J, 1|0 1|5 23' 9
4 Time [s]

Method Time Average power Energy GFlops GFlops/W
banded CG 1 HHS 1.8s 17/41W,s5e 49W 0.3kW-s 2.9 0.03
banded CG 32 RHS's B.4s 1/726W, se 142W 1.0kW-s 37.8 0.22
CG 1 RHS 03.8s 17/790W,se. 1.8W 9.6kW.-s 15.7 0.09
CG 32 RHS's 125,08 195.0W,se 10.8W 246KkW-s 222.2 1.13
Cholesky 246.05 190.0W, se. 13.0W 103.7kW-s 214.4 1.1
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IN GENERAL: CONSIDER

v" LOW PRECISION, LOW COST, LOW POWER: LP
v" HIGH PRECISION, HIGH POWER: HP
v" Let SLV(A,y,) be a LP procedure approximating Ax=b
SLV: Analog? Neuromorphic (spikes?), Neural Nets?, Machine Learning?

«  Compute initial solution: x,=SLV(A,b) Cost: really low time/power
¢ Compute initial residual: r,=b - Ax, Cost: n?
k=0
* REPEAT
. Solve for residual: d,= SLV(A,r,) Cost: really low time/power
Update solution: x,., = x, +d, Cost: n
Compute residual:r,,, =b - Ax, ., Cost: n?
k=k+1
1. UNTIL ||r,,,|| tol
Key properties:

Overall cost: O(n?), instead of O(n)
Most of arithmetic is performed on Low Power platform

© 2015 IBM Corporation
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Some thoughts on possible low power solutions:

* Learning approaches
+ Machine Learning / Statistical approach
4 Neural Networks

* Neuromorphic approaches
- Spike computing to simulate numerics

* Hardware approaches
4 Accelerators (GPUs)
4+ FPGAs
4+ SPDs
4 Low reliability hardware (low voltage)

l © 2015 IBM Corporation
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Examples...

J
Learning / stochastic approach: Reduce dimension by random sampling

XDATA DARPA PROJECT (2012-2016)

How will we decide which sampling?
= = - Estimate prion probabilities?
= C = - Compare with “similar” cases?
_ - “Sparsify” full graph? Dynamicaly
- - Changing network?
- Learn starting vector?

See recent work by Drineas, Mahoney,

: ” Claskson, Boutsidis and others)
Analog emulation or “inexact

Digital computation: Threshold computing? (inexact bolean algebra)
- Specially designed FPGAs

Spike computing numerical linear algebra: investigation

© 2015 IBM Corporation
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The Roadmap to Exascale poses great challenges

= Power

Emphasis on power: Algorithms have a potentially very large
margin of improvement. Accelerate computations by replacing
power hungry digital arithmetic with green but noisy alternative
computing: Low Prec. Digital / Neuromorphic/ Learning / Analog

How are we addressing the challenge: Introducing “noise” and
stochasticity...allows for different kind of hybrid computing.

Algorithms: There is “plenty of room up there”

l © 2015 IBM Corporation
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