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Complex Systems

Complex

[ad]., v. kuh m-pleks, kom-pleks; n.
kom-pleks]

—adjective

1.

composed of many interconnected
parts; compound; composite: a
complex highway system.

2.

characterized by a very complicated or
involved arrangement of parts, units,
etc.. complex machinery.

3.

so complicated or intricate as to be
hard to understand or deal with: a
complex problem.
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Complexity, a scientific theory
which asserts that some systems
display behavioral phenomena that
are completely inexplicable by any
conventional analysis of the
systems’ constituent parts. These
phenomena, commonly referred to
as emergent behaviour, seem to
occur in many complex systems
Involving living organisms, such as a
stock market or the human brain.
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Networks of Complex Interactions

Behind every

N complex system

| there Is a network,
il that defines the
LTl interactions

‘ / between the
components.

Facebook, a global social network

We will never understand complex system
unless we map out and understand the

networks behind them.

Q A.-L. Barabasi, Network Science Book Project (2013) QGLYTECA/
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Networks Everywhere
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Communities in Gowalla Social Network
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Human Genome

How Many Genes are in
the Human Genome?

23,299

http://www.ornl.gov/sci/techresources/
Human_Genome/fag/genenumber.sht
ml

Humans have only about
three times as many genes as
the fly, so human complexity
seems unlikely to come from a
sheer quantity of genes. Rather,
some scientists suggest, each
human has a network with
different parts like genes,
proteins and groups.
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Human Genes
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In the generic networks shown here,
the points represent the elements of
each organism’s genetic network,
and the dotted lines show the
Interactions between them.

A.-L. Barabasi, Network Science Book Project (2013)



Impact on Drug Design, Metabolic Engineering

Reduces Prevents
Inflammation Heart attack
Fever Stroke

Pain

i
Innovators
The TIME 100
Of the Future
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ALZHEIMER’S

Thed 5s The genetics

: Causes
Reduces the risk of Reduces the risk of Bleeding
Alzheimer's Disease breast cancer Ulcer
ovarian cancers i
de colorectal cancer 2 WP g
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A.-L. Barabasi, Network Science Book PrOJect(2013)
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Human Disease Network
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Discovering Communities in Social & Bio-networks

ey 9 Clustering implies modularity

' Functional modularity imposes
natural boundary lines between
communities.

Discovering community structure
uncovers functionality
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Motivation for Specialized Algorithms
» Biological and social networks have high level of noise and
therefore have incorrect or missing links

» Biological or social functions are accomplished by
communities of interacting molecules/cells or people

» Membership in these communities may overlap when humans
or biological components are involved in multiple functions

Addition of
noise &
unclustered links

. N A e 20 40 60 80 100 120 140 180 180

Multi-community nodes .
y Red dot = connection between nodes »



SLPA/GANXIS Community Detection Algorithm

* An extension of the Label Propagation Algorithm (LPA) in
which nodes send their labels to neighbors and most

popular label is retained. All nodes left with the same label
represent community

* SLPA mimics pairwise interactions between nodes
(functional in bio-network, social in social networks)

 Each node broadcasts a label to its neighbors and at the

same time receives a label from each of its neighbors

- Each node has a memory of received “
labels which are taken into account in
the next round of broadcasting

- Linear time complexity O(m)) in the ,h
number of edges

J. Xie, B. Szymanski, Proc. IEEE Network Science Workshop, pp. 138 - 143. (2013).
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SLPA Interaction Rules

Node i neighbors

node i

Select _
the most b
popular

node i @

Q J. Xie, S. Kelley, B. Szymanski, ACM Computing Surveys (2013).

SCNARC

Select by
density 06 -
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In the end, a label distribution is
derived for each node.

PPAM, Krakow, Poland, September 7, 2015
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Challenges of Community Detection Parallelization
Partitioning

Domain decomposition Functional decomposition

Problem Data Set

- - - - Problem Instruction Set
task 0 task 1 task 2 task 3 f
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Basic Differences in Computational Patterns

Physics Interactions Network interactions

Regular grid embedded in Links are independent of nodes’
space, all interaction are local. locations, interactions are global.
Regular computational stencils Irregular computational stencils
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E. David, J. Kleinberg, Networks, Crowds, and Markets: Reasoning about a Highly Connected World. CUP (2010).
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Parallel SLPA/GANXIS

Partition the data (nodes) between processors

Perform label propagation on each partition in
parallel

Synchronize at the end of each label propagation
|te ratl on problem instructions

=l | |I-=
=l | I-E=
~ il | 1-E
-l | -=

Q- RO
dgb K. Kuzmin, M. Chen, B. Szymanski, Scientific Programming (2015). ﬁr“(/iw =

Combine the
results and
extract
communities
(also in parallel)

SCNARC PPAM, Krakow, Poland, September 7, 2015 ‘V’”,}’”‘& :



Partitioning of Network Nodes

Thread 1/ CPU 1 Thread 2 /| CPU 2
Each thread runs on
O O O O a dedicated CPU
(CPU Core)
O O O O Each thread
O processes a subset
O O O of nodes:
Each thread gets
Thread 3/CPU 3 Thread 4 / CPU 4 the same number
O of nodes
O O -or-
O O O~ 0 Each thread gets
O O O O O nodes with the
Q O O same sum of
Q O degrees
if(b‘;&% ‘(!l é}
V%
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t iterations

Synchronization between Threads

|deal partitioning

To
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K. Kuzmin, M. Chen, B. Szymanski, Scientific Programming (2015).
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Parallel Efficiency

MPI| based approach

Multithreading approach

Speedup vs. # Processors Speedup and efficiency, splitting at 0.2
140.000
120.000 A i / 1
100.000 N\ /
/ \ 0,3
80.000 / 2 \\ >
60.000 k 0.6 g
a \% £ —fpSpeadup
40.000 0.4 =i Efficiency
20.000 / \
0.000 (4= o . 02
1 2 4 8 16 32 64 | 128 | 256 | 512 | 1024
s=pmmSpeedup | 1.000 | 2.253 | 4.924 {10.200|17.889|35.094 [22.904 | 44.401| 71.132 115.849 83.815 - - - - ' 0
1 2 4 3 1& 32
MNumber of threads {cores) utilized
K. Kuzmin, M. Chen, B. Szymanski, Scientific Programming (2015). Q%YTEC%/
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SpeakEasy Algorithm

» Novelty: Identifies communities using top-down and bottom-up
approaches simultaneously. Specifically, nodes join communities based
on their local connections and global information about the network
structure.

» Label propagation algorithm: each node updates its status to the label
found among nodes connected to it which has the greatest specificity, i.e.,
the actual number of times this label is present in neighboring nodes
minus its expected number based on its global frequency.

» Consensus clustering: the partition with the highest average adjusted
Rand Index among all other partitions is selected as the representative
partition to get robust community structure.

» QOverlapping communities: overlapping communities can be obtained
with co-occurrence matrix. Multi-community nodes are selected as nodes
which co-occur with more than one of the final clusters with greater than a
user-selected threshold. o15). e,
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Visual Example of SpeakEasy Clustering

» Labels are represented by color tags

» Multi-community nodes are tagged with multiple colors

A. Each node is assigned with random B. Nodes with the same labels belong to
unique label (before clustering) the same community (after clustering)
#ECG
C. Gaiteri, M. Chen, B.K. Szymanski, et al. ,arXiv:1501.04709 (2015) .§/Q’;§£w'%?,
(SQD 2 WP 2
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Clustering Workflow

» Algorithm identifies communities
though evolution of common labels. —N

> After a certain number of iterations of
label propagation or if none of the

nodes updates its labels in the given 5 "
iteration, nodes with the same label
will be clustered into the same -
community. . .i

Nodes

P T A FoC 1=
80 20 100 120 140 160 180 200

» However, because the clustering is
fast and parameter-free, running the
algorithm multiple times, we get an

assessment of the robustness of the 2 0
clusters and the identity of multi-
community nodes.

Q C. Gaiteri, M. Chen, B.K. Szymanski, et al. ,arXiv:1501.04709 (2015)

SCNARC PPAM, Krakow, Poland, September 7, 2015
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ldentifying Robust Clusters

» Individual clustering results look pretty ered node ADJ #1
good (dense within-community clusters, i C R, L
and not many between-community
links.) N

» However, how robust are these clusters? ;

» One way to test cluster robustness is to oo [
resample the data, rebuild the clusters, oo i
and compare them to the original, or to i
other clusters built by resampling.

» For example, how similar are the
clusters from a resampled dataset?

» The sample with the highest average
adjusted Rand Index among all other ok
samples is selected as the .
representative sample to get robust 3k

communities. N .
C. Gaiteri, M. Chen, B.K. Szymanski, et al. ,arXiv:1501.04709 (2015) ..

s s ]
T 3  EEL IS i
L 4 '\- s »
: g ; i ;
e :
Fi
20 40 60 80 100 120 140 160 180 200
Nodes

SCNARC PPAM, Krakow, Poland, September 7, 2015

23



|dentifying Multi-community Nodes

Co-occurrence matrix

» Run SpeakEasy multiple times
(e.g. 100x).

» For all pairs of nodes (i, |) the
“co-occurrence” matrix records
number of times they land in
same cluster.

20 40 B0 80 100 120 140 160 180
Nodes

» This is useful for both identifying  Clusters in this matrix show

nodes that cluster across
many initial conditions

robust clusters and for finding
nodes that link multiple

communities tog ether. Strong non-clustered/ off-

diagonal elements show
multi-community nodes

Q C. Gaiteri, M. Chen, B.K. Szymanski, et al. ,arXiv:1501.04709 (2015)

SCNARC PPAM, Krakow, Poland, September 7, 2015
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High-Level Approach to Parallelizing SpeakEasy

e Partition the data (nodes) between processors

* Perform label propagation on each partition in
parallel

* Synchronize at the end of each label
propagation iteration

* Exchange the global label frequencies
information among the processors

e Extract community data from label histories
(also in parallel)
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Parallel Communication Overhead

« Sending updated
label history of nodes
across partitions

S. Fortunato, Physics Reports, pp. 75-174 (210)

&b

SCNARC PPAM, Krakow, Poland, September 7, 2015

« Sharing the global
abel frequency table
netween all

Drocessors
1 15/575
2 1/575
3 72/575
4 3/575
5 0/575
6 12/575
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Propagating Label History Updates

Scalability is affected by:

* Network properties (degree of nodes). The
larger the average degree of nodes, the more
likely it is that edges will go across partition
cuts.

* The quality of partitioning. The larger the
number of edges going across partition cuts,
the more significant the parallel
communication overhead.

&b
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Node Degree Considerations

If in the data scalability setting for larger networks the
average node degree:

* is constant then the number of edges grows linearly with n
(the number of nodes in the network) and so does the
amount of computation per processor. Overall complexity
O(m) = O(n). Very scalable.

* grows as log(n) then the number of edges grows as n*log(n),
i.e. superlinear. Overall complexity O(m) = O(n*log(n)). Less
scalable than the previous case but still practical.

Both cases happens in social and bio-medical networks

&b
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Quality of Partitioning

|deal partitioning

* The nodes should be partitioned y 1
such that the number of edges Q@Q
Inside a partition is maximized JE— C—
while the number of edges Q@Q
between partitions is minimized —X—
and the number of partitions OO0
which these edges reach
minimized.

« Each partition should contain the  forallveV do
same number of edges, e.g. the
sum of degrees (load balancing).

Q http://lwww.cs.berkeley.edu/~demmel/cs267/lecture18/lecturel8.html

SCNARC PPAM, Krakow, Poland, September 7, 2015
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SCNARC PPAM, Krakow, Poland, September 7, 2015

Global Label Frequency Table

The total number of distinct labels Is at
most the number of nodes

Most labels become extinct as processing
progresses

They are completely recalculated at every
iteration of the algorithm

Computational complexity is O(n)
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Parallel Calculation of the Global Label
Frequency Table

» Each processor calculates the portion of the table
for the labels of all of its nodes

« Label frequencies computed by different
processors are reduced to create the global table

» Each processor only needs access to the
frequency of labels of all the neighbors (both
Inside and outside the partition) of its nodes

« Parallel communication overhead depends on the
overlap of labels across different partitions and the
number of edges between partitions

&b
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Sequential Fraction of SpeakEasy

Reading the input network file

* May affect the overall performance for large networks
(especially if the average node degree is high)

 Can be improved in certain scenarios by using distributed or
parallel 1/0

Partitioning the network

* Performance penalty depends on the partitioning algorithm
used

* Can be eliminated if a network is pre-partitioned
Writing the output communities file

* The size depends on the number of nodes and the degree of
communities overlap

* Usually does not seriously affect the overall performance

CSQD (
/-f.

SCNARC PPAM, Krakow, Poland, September 7, 2015
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Parallel Consensus Clustering

 Partition blocks of individual clusters of nodes
(communities) between processors (requires
communication)

« Compute Adjusted Rand Index (ARI) for every
pair of clusters in parallel

« Determine the clustering with the highest
average ARI value In parallel

« Assign each node to additional communities

based on the values of the co-occurrence matrix

(done in parallel)

&b

SCNARC PPAM, Krakow, Poland, September 7, 2015
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Performance on Real-world Networks

» SpeakEasy shows improved performance on 6/15 networks using
the modularity (Q) metric, over other algorithms.

» SpeakEasy performs better than GANXIS on 14/15 of the networks
with a mean percent difference of 28% over GANXIS.

network

karate
dolphins
Les. Mis.
pol. books
football
Santa Fe
jazz
railway

c. elegans
email

pol. blogs
net science
PGP

DELP
Amazon

fn

34
62
77
105
115
118
198
297
453
1133
1224
1461
10680
260993
319948

Comparison of the quality of community structures detected with GANXIS and SpeakEasy
on 15 real-world networks using modularity (Q) and modularity density (Qds).

m

78
159
254
441
613
200
2742
1213
2525
5254
19022
2742
24316
950059
280215

GANXS (Q)

0.3924
0.4408
0.5224
0.4531
0.5878
0.7166
0.2816
0.6989
0.1706
0.5035
0.4177
0.9039
0.8039
0.6622
0.7659

SpeakEasy (Q)

0.4198
0.5017
0.5480
0.4973
0.5811
0.4732
0.4443
0.60935
0.3883
0.4916
0.3533
0.7657
0.7315
0.6066
0.7094

percentage

difference (Q)

6.75
12.92
4.78
2.90
-1.15
-39.69
44.83
-13.61
77.90
-2.39
-16.71
-16.55
-9.43
-8.76
-7.66

GANXIS Q)

0.2116
0.1664
0.2808
0.1634
0.3792
0.2093
0.1917
0.2632
0.05151
0.05360
0.0230
0.5797
0.1595
0.20138
0.2007

SpeakEasy (Qy)

0.2302
0.2378
0.3438
0.2396
0.4856
0.2963
0.2134
0.3756
0.1079
0.1025
0.0426
0.3600
0.1906
0.2628
0.2556

percentage

8.42
35.33
20,17
37.82
24.61
34.13
10.71
35.20
70.75
62.55
59.78

-46.76
17.77
26.29
24.04

difference ()
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Application to Protein-protein Interaction Datasets

A

example canonical (SGD)
i\ communities

example SpeakEasy
\ communities

[

A. The high throughput interaction dataset from Gavin et al. has nodes colored according

to protein complexes found in the Saccharomyces Genome Database (SGD).

B. The communities identified with SpeakEasy on the high throughput interaction dataset AONTE,

&b from Gavin et al.

SCNARC C. Gaiteri, M. Chen, B.K. Szymanski, et al., arXiv:1501.04709 (2015)




Application to Cell-type Clustering
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biological classifications of
immune cell types are
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Application to Resting-state fMRI Data

Control comalation matrix
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A. Raw correlation matrices
between resting state brain
activity from control and
Parkinson disease cohorts.

B. Co-occurrence matrices for
controls and Parkinson
disease cohorts.
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Thank You

Questions?
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