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[adj., v. kuh m-pleks, kom-pleks; n. 
kom-pleks]  

–adjective  

1.  

composed of many interconnected 
parts; compound; composite: a 
complex highway system.  

2.  

characterized by a very complicated or 
involved arrangement of parts, units, 
etc.: complex machinery.  

3.  

so complicated or intricate as to be 
hard to understand or deal with: a 
complex problem.  

  Source: Dictionary.com 

Complexity, a scientific theory 
which asserts that some systems 
display behavioral phenomena that 
are completely inexplicable by any 
conventional analysis of the 
systems’ constituent parts. These 
phenomena, commonly referred to 
as emergent behaviour, seem to 
occur in many complex systems 
involving living organisms, such as a 
stock market or the human brain. 

 
Source: John L. Casti, Encyclopædia Britannica 

  

 

Complex Systems 
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Behind every 

complex system 

there is a network, 

that defines the 

interactions 

between the 

components.  

Networks of Complex Interactions 

A.-L. Barabasi, Network Science Book Project (2013) 

Facebook, a global social  network 

We will never understand complex system 

unless we map out and understand the 

networks behind them. 
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Router level Internet 

[Lumeta Corp.] 

Communities in Gowalla Social Network      

Tommy Nguyen et al., (2012) 
High school friendship network [AddHealth] 

airline transportation network 

Networks Everywhere 
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How Many Genes are in  

the Human Genome? 

 

 

http://www.ornl.gov/sci/techresources/

Human_Genome/faq/genenumber.sht

ml 

   

23,299 

Human Genome 

Humans have only about 

three times as many genes as 

the fly, so human complexity 

seems unlikely to come from a 

sheer quantity of genes. Rather, 

some scientists suggest, each 

human has a network with 

different parts like genes, 

proteins and groups. 

 A.-L. Barabasi, Network Science Book Project (2013) 



Drosophila 

Melanogaster 

Homo 

Sapiens 

In the generic networks shown here, 
the points represent the elements of 
each organism’s genetic network, 
and the dotted lines show the 
interactions between them.  
 

   

Human Genes 

A.-L. Barabasi, Network Science Book Project (2013) 



Reduces  
Inflammation 
Fever 
Pain 
 

Prevents 
Heart attack 
Stroke 

Causes  
Bleeding 
Ulcer 

Reduces the risk of  
Alzheimer's Disease 

COX2 

Reduces the risk of  
breast cancer 
ovarian cancers 
colorectal cancer 

Impact on Drug Design, Metabolic Engineering 

A.-L. Barabasi, Network Science Book Project (2013) 



A.-L. Barabasi, Network Science Book Project (2013) 



Human Disease Network 

A.-L. Barabasi, Network Science Book Project (2103) 
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Discovering Communities in Social & Bio-networks 

Clustering implies modularity 
Functional modularity imposes 
natural boundary lines between 
communities. 
 
Discovering community structure 
uncovers functionality 

Bio (left) and social  (right) networks are driven by functionality  



Motivation for Specialized Algorithms 

 Biological and social networks have high level of noise and 

therefore have incorrect or missing links  
 

 Biological or social functions are accomplished by 

communities of interacting molecules/cells or people 
 

 Membership in these communities may overlap when humans 

or biological components are involved in multiple functions 

Addition of  

noise &  

unclustered links 

Multi-community nodes 
Red dot = connection between nodes 
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• An extension of the Label Propagation Algorithm (LPA) in 
which nodes send their labels to neighbors and most 
popular label is retained. All nodes left with the same label 
represent community  

• SLPA mimics pairwise interactions between nodes 
(functional in bio-network, social in social networks) 

• Each node broadcasts a label to its neighbors and at the 

same time receives a label from each of its neighbors 

 

12 

• Each node has a memory of received 
labels which are taken into account in 
the next round of broadcasting 

• Linear time complexity O(m)) in the 
number of edges 

SLPA/GANXiS Community Detection Algorithm 

J. Xie, B. Szymanski, Proc. IEEE Network Science Workshop, pp. 138 - 143. (2013).  
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J. Xie, S. Kelley, B. Szymanski, ACM Computing Surveys (2013).  

In the end, a label distribution is 

derived for each node. 
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Challenges of Community Detection Parallelization 

Partitioning  

Domain decomposition Functional decomposition 
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https://computing.llnl.gov/tutorials/parallel_comp/ 
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Basic Differences in Computational Patterns 

 
Physics Interactions 
Regular grid embedded in 
space, all interaction are local. 
Regular computational stencils 

Network interactions 
Links are independent of nodes’ 
locations, interactions are global. 
Irregular computational stencils 
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E. David, J. Kleinberg, Networks, Crowds, and Markets: Reasoning about a Highly Connected World. CUP (2010).  
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Parallel SLPA/GANXiS 

• Partition the data (nodes) between processors 

• Perform label propagation on each partition in 

parallel 

• Synchronize at the end of each label propagation 

iteration 

K. Kuzmin, M. Chen, B. Szymanski, Scientific Programming (2015). 

• Combine the 

results and 

extract 

communities 

(also in parallel) 
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Partitioning of Network Nodes 
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•Each thread runs on 

a dedicated CPU 

(CPU Core) 

•Each thread 

processes a subset 

of nodes: 

Each thread gets 

the same number 

of nodes 

-or- 

Each thread gets 

nodes with the 

same sum of 

degrees 
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Synchronization between Threads 

Ideal partitioning A practical partitioning 
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K. Kuzmin, M. Chen, B. Szymanski, Scientific Programming (2015). 
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Parallel Efficiency 

MPI based approach Multithreading approach 
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K. Kuzmin, M. Chen, B. Szymanski, Scientific Programming (2015). 
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SpeakEasy Algorithm 

 Novelty: Identifies communities using top-down and bottom-up 

approaches simultaneously.  Specifically, nodes join communities based 

on their local connections and global information about the network 

structure. 
 

 Label propagation algorithm: each node updates its status to the label 

found among nodes connected to it which has the greatest specificity, i.e., 

the actual number of times this label is present in neighboring nodes 

minus its expected number based on its global frequency. 
 

 Consensus clustering: the partition with the highest average adjusted 

Rand Index among all other partitions is selected as the representative 

partition to get robust community structure.  
 

 Overlapping communities: overlapping communities can be obtained 

with co-occurrence matrix. Multi-community nodes are selected as nodes 

which co-occur with more than one of the final clusters with greater than a 
user-selected threshold. 015). 
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Visual Example of SpeakEasy Clustering 

 Labels are represented by color tags 
 

 Multi-community nodes are tagged with multiple colors 

A. Each node is assigned with random 

unique label (before clustering) 

B. Nodes with the same labels belong to 

the same community (after clustering) 

C. Gaiteri, M. Chen, B.K. Szymanski, et al. ,arXiv:1501.04709 (2015) 
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Color-coded  

community ID 

 Algorithm identifies communities 

though evolution of common labels.  

 

 After a certain number of iterations of 

label propagation or if none of the 

nodes updates its labels in the given 

iteration, nodes with the same label 

will be clustered into the same 

community.  

 

 However, because the clustering is 

fast and parameter-free, running the 

algorithm multiple times, we get an 

assessment of the robustness of the 

clusters and the identity of multi-

community nodes. 

Correlation matrix after clustering 
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Nodes 

Clustering Workflow 

C. Gaiteri, M. Chen, B.K. Szymanski, et al. ,arXiv:1501.04709 (2015) 
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 Individual clustering results look pretty 
good (dense within-community clusters, 
and not many between-community 
links.) 
 

 However, how robust are these clusters?   
 

 One way to test cluster robustness is to 
resample the data, rebuild the clusters, 
and compare them to the original, or to 
other clusters built by resampling. 
 

 For example, how similar are the 
clusters from a resampled dataset? 
 

 The sample with the highest average 
adjusted Rand Index among all other 
samples is selected as the 
representative sample to get robust 
communities.  
 

Clustered node ADJ #1 

Nodes 

Nodes 

N
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N

o
d
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??? 
Clustered node ADJ #2 

Identifying Robust Clusters 
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C. Gaiteri, M. Chen, B.K. Szymanski, et al. ,arXiv:1501.04709 (2015) 
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 Run SpeakEasy multiple times 
(e.g. 100x). 

 

 For all pairs of nodes (i, j) the 
“co-occurrence” matrix records 
number of times they land in 
same cluster. 

 

 This is useful for both identifying 
robust clusters and for finding 
nodes that link multiple 
communities together. 

Co-occurrence matrix 

Clusters in this matrix show 

nodes that cluster across 

many initial conditions 

 

Strong non-clustered/ off-

diagonal elements show 

multi-community nodes 
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Identifying Multi-community Nodes 

C. Gaiteri, M. Chen, B.K. Szymanski, et al. ,arXiv:1501.04709 (2015) 
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High-Level Approach to Parallelizing SpeakEasy 

• Partition the data (nodes) between processors 

• Perform label propagation on each partition in 
parallel 

• Synchronize at the end of each label 
propagation iteration 

• Exchange the global label frequencies 
information among the processors 

• Extract community data from label histories 
(also in parallel) 
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Parallel Communication Overhead 

• Sending updated 

label history of nodes 

across partitions 

 

• Sharing the global 

label frequency table 

between all 

processors 
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S. Fortunato, Physics Reports, pp. 75-174 (210) 

Label Frequency 

1   15/575 

2    1/575 

3   72/575 

4    3/575 

5    0/575 

6 12/575 

… 
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Propagating Label History Updates 

Scalability is affected by: 

• Network properties (degree of nodes). The 
larger the average degree of nodes, the more 
likely it is that edges will go across partition 
cuts. 

• The quality of partitioning. The larger the 
number of edges going across partition cuts, 
the more significant the parallel 
communication overhead.  
 

27 
PPAM, Krakow, Poland, September 7, 2015 



Node Degree Considerations 

If in the data scalability setting for larger networks the 
average node degree: 

• is constant then the number of edges grows linearly with n 
(the number of nodes in the network) and so does the 
amount of computation per processor. Overall complexity 
O(m) = O(n). Very scalable. 

• grows as log(n) then the number of edges grows as n*log(n), 
i.e. superlinear. Overall complexity O(m) = O(n*log(n)). Less 
scalable than the previous case but still practical. 

Both cases happens in social and bio-medical networks 

 

28 
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Quality of Partitioning 

Ideal partitioning 
• The nodes should be partitioned 

such that the number of edges 
inside a partition is maximized 
while the number of edges 
between partitions is minimized 
and the number of partitions 
which these edges reach 
minimized. 

• Each partition should contain the 
same number of edges, e.g. the 
sum of degrees (load balancing). 
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http://www.cs.berkeley.edu/~demmel/cs267/lecture18/lecture18.html 
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Global Label Frequency Table 

• The total number of distinct labels is at 

most the number of nodes 

• Most labels become extinct as processing 

progresses 

• They are completely recalculated at every 

iteration of the algorithm 

• Computational complexity is O(n) 

30 
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Parallel Calculation of the Global Label 

Frequency Table 

• Each processor calculates the portion of the table 
for the labels of all of its nodes 

• Label frequencies computed by different 
processors are reduced to create the global table 

• Each processor only needs access to the 
frequency of labels of all the neighbors (both 
inside and outside the partition) of its nodes 

• Parallel communication overhead depends on the 
overlap of labels across different partitions and the 
number of edges between partitions 
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Sequential Fraction of SpeakEasy 

Reading the input network file 
• May affect the overall performance for large networks 

(especially if the average node degree is high) 
• Can be improved in certain scenarios by using distributed or 

parallel I/O 
Partitioning the network 
• Performance penalty depends on the partitioning algorithm 

used 
• Can be eliminated if a network is pre-partitioned 
Writing the output communities file 
• The size depends on the number of nodes and the degree of 

communities overlap 
• Usually does not seriously affect the overall performance 

32 
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Parallel Consensus Clustering 

• Partition blocks of individual clusters of nodes 
(communities) between processors (requires 
communication) 

• Compute Adjusted Rand Index (ARI) for every 
pair of clusters in parallel 

• Determine the clustering with the highest 
average ARI value in parallel 

• Assign each node to additional communities 
based on the values of the co-occurrence matrix 
(done in parallel) 
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Performance on Real-world Networks 
 SpeakEasy shows improved performance on 6/15 networks using 

the modularity (Q) metric, over other algorithms. 
 

 SpeakEasy performs better than GANXiS on 14/15 of the networks 

with a mean percent difference of 28% over GANXiS. 

Comparison of the quality of community structures detected with GANXiS and SpeakEasy 

on 15 real-world networks using modularity (Q) and modularity density (Qds). 
34 



Application to Protein-protein Interaction Datasets 

A. The high throughput interaction dataset from Gavin et al. has nodes colored according 

to protein complexes found in the Saccharomyces Genome Database (SGD). 

B. The communities identified with SpeakEasy on the high throughput interaction dataset 

from Gavin et al. 

C. Gaiteri, M. Chen, B.K. Szymanski, et al., arXiv:1501.04709  (2015) 
 



Application to Cell-type Clustering 

Primary and secondary 

biological classifications of 

immune cell types are 

reflected in primary and 

secondary clusters. 
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Application to Resting-state fMRI Data 

A. Raw correlation matrices 

between resting state brain 

activity from control and 

Parkinson disease cohorts. 

B. Co-occurrence matrices for 

controls and Parkinson 

disease cohorts. 
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Thank You 

 

Questions? 
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