Directive-Based Parallel
Programming in an Age of
Diversity
Barbara Chapman

Stony Brook University
University of Houston

Krakow, September 2015
/=\HPC

‘ g) °
IH' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

http://www.cs.uh.edu/~hpctools

Agenda

» Changing High-Performance Computing
(HPC) Architectures

On-Going Architectural Changes

Top500: Av. Core Count

60000 50463.78

50000 43298.742
38692.792
40000
26855.89
30000
15559.848 1 4008

20000 962 324
10000 488

0

No. of Cores

2011 2012 2013 2014 2015

Year

Single-Core Multi-Core Heterogeneous
Era Era Systems Era
Enabled by: Enabled by: Enabled by:
v' Moore’s Law v’ Moore’s Law v' Moore’s Law
v Voltage Scaling v Desire for Throughput v' Abundant data parallelism
v’ MicroArchitecture v' 20 years of SMP arch v Power efficient GPUs
Constrained by: Constrained by: Currently constrained by:
X Power X Power X Programming models
X Complexity X Parallel SW availability % Communication overheads
X Scalability
3 3
c c
g 2 5.
£ £ =
; 5 25
& & g g
o -
© 3 '8 T
£ g B2 weare
o ©
% £ » = ! |
< = Time Time
@ (# of Processors) (Data-parallel exploitation)

o Move to multi-/manycore nodes
o Thermics, power are now key in design decisions

O Massive increase in intra-node concurrency

O Trend toward heterogeneity
O Deeper, more complex memory hierarchies

‘ E;) °
IHCS INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Intel: “Sea of Blocks” Compute Model

CE Host Processor: A\ -
Full x86, > sl
TLBs, SSE, ...

AU AU AU
(i)| (i)| [ia)

(aur)| (a1 J||[du |

I_
sL1 sL1 sL1 /T
Intra-Accelerator Network NLNI 3\

Special I/0

Fabric

[AU AU AU AU)
it) (i)i) [i I
[du |

([du1 |

External DRAM & NVM >

e OF ~ (c) 2014, Intel
IH S lNSTITUTE»FORADVANCED
COMPUTATIONAL SCIENCE

Machines + Disk

v
«OL
h V \ Q-Q—VU ’
Chassis w/ large _u_u_W+z<_<_ per Exa-
machine
TracImnme ’
m “ Boards w/ limited DJ_N+Z<_<_ per Chassis
: [)
O i i Sockets w/ __n»._<_ per Board
m m [)
O : m i Dies w/ shared _._.%\m_ub,_u per socket
N4 : m i | Blocks w/ m_wm_,ma L2 per
5 . 1 1 Ao
: : i i f ate \
O : ! i i ; Cores per block
m m : " m f : \
VM. m C o i wnln
1 ! 1 U L ! R 2 . — —
— ! ; : _ i =1 =) Hp =
°© HEESEREEE HAE i : ul = =
@) o HEMNEIHENHEE : ! i ol | = <
s | Z| O i =IO _ = " ! i << =
m i ! ! : ; VSRR Vo NI VoY S
! : ! 3 ; Pl =N —~
e C
O e ‘
i m _ _ i Y
M “ ; i ! | : (o1)o |
m m ! m Y
m i ! _, (ooL)o
w “ m ! Y
y— : i ! (1)o
W ,)
> m m (1o
Q | | < \
i (01)o
| _ \ J
|
I
<

—
~
o |
°
IH' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

&

Core Heterogeneity in HPC Systems

Compute
Nodes Compute Nodes
with GPUs

e |

Each node has multiple CPU cores, and some of the nodes are equipped
with additional computational accelerators, such as GPUs.

www.olcf.ornl.gov/wp-content/uploads/.../Exascale-ASCR-Analysis.pdf

°
$; IRCS INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

_ TSUBAME?2.0 GPU Rationalization

7))

o 1750

9 15ho rmas) ?'“Q!EU Courtesy: Satoshi Matsuoka,
L(b_ T it m‘mV Tokyo Instutute of Technology
=~ 12p0

o / « ~3000 CPUs at 200+ Teraflops, ~4000

c 1O) GPUs at 2.2 Petaflops
«ms/ wm o Reglistic best case: xX6~6 perf gain per

o /;QPU socket
240 et — Machine equivalent to 25,000~30,000 CPUs

* Alternative: CPU only, same $$$ and

200 GPL power, how big a system?
I — Answer: at best 5~6000 CPUs (Tsubame 1.0)
S w/ at 400+ Teraflops

190 —~ « CPU equivalency = 1.4 x utilization x
] perf gain > 1.0 then we win!

80 s / * No religious war but simple economics

—yd C P e

40s0 oseres Wf
Prescatt

2003 2004 2005 2006 2007 2008 2009 2010
[]
ﬁ IRCS sy ron e

Memory Bandwidth [GByte/s] Peak Performan
>
(&

[0/'@?0”80,

Energy Efficiency: CPU vs GPU

FFT Efficiency - GFlops/Watt

L0 —%— 24 CPUs
3 4 GPUs

3 GPUs
—3¢— 2 GPUs
| —4— 1GPU

GFlops/Watt

G iACS s s

KEPLER GPU PASCAL GPU

Pascal NVLink

Unified Memory :

3D Memory

4x Higher Bandwidth

NVLink 1o

3x Larger Capacity

High-Speed GPU 4x More Energy
Efficient per bit

Interconnect

POWER CPU

NVLink

GPU

X86, X86, ARM64,
ARM64, POWER CPU

DNIA/ED rbDild
I W WV kil Wi W

°
@ IR‘ S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

Integration ot Accelerators:

CAPI and APU

IBM’s Coherent Accelerator Processor Interface (CAPI) integrates
accelerators into system architecture with standardized protocol

Enables third parties to provide components
* FPGASs, ASICs, ...

AMD’s Heterogeneous System Architecture
(HSA)-based APU also integrates accelerators

Global Memory

‘ g ? °
IH‘ S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Keystone Il: 66AK2H12/06 SoC

C66x Fixed or Floating Point
DSP

» 4x/8x 66x DSP cores up to 1.4GHz

» 2x/4x Cotex ARM A15

* 1MB of local L2 cache RAM per C66 DSP core
* 4MB shared across all ARM

Large on chip and off chip
memory

* Multicore Shared Memory Controller provides low
latency & high bandwidth memory access

* 6MB Shared L2 on-chip

» 2 x 72 bit DDRS3, 72-bit (with ECC), 10GB total
addressable, DIMM support (4 ranks total)

KeyStone multicore architecture
and acceleration

* Multicore Navigator, TeraNet, HyperLink
* 1GbE Network coprocessor (IPv4/IPv6)
» Crypto Engine (IPSec, SRTP)

Peripherals

* 4 Port 1G Layer 2 Ethernet Switch

» 2x PCle, 1x4 SRIO 2.1, EMIF16, USB 3.0 UARTX2,
SPI, I2C

» 15-25W depending upon DSP cores, speed, temp &
other factors

°
IR‘ S INSTITUTE FOR ADVANCED
/ COMPUTATIONAL SCIENCE

Multicore Navigator {?

System Elements

s

Network
AccelerationPacs

66x [66x 66X 66X
ARMIARM ARMIARM|66Xx 66x 66x 66X

A15 A15 A15 A15
nab b) nwaB

4MB 1MB § 1MB §| 1MB § 1MB

64/72b
DDR3 MSMC 6MB

x2

TeraNet

EMIF and 1/0
16b UART SPI 12C USB3
EMIF x2 x3 x3

High Speed SERDES

HyperLink
X2

40mm x 40mm package

Agenda

* Implications for Application Development

‘ g) °
IH‘ S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

HPC Applications: Requirements

m Performance
* Must be able to exploit features of emerging machines at
all levels

* APIs must facilitate expression of concurrency, save
power, use memory efficiently and exploit heterogeneity

m Performance portability
* Implies not just that APIs are widely supported
e But also that same code runs well everywhere

* Very hard to accomplish

Performance less predictable in dynamic
execution environment

‘ Ei) °
Iﬂ' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Developing HPC Applications

m Productivity
* Need approaches that are reasonably easy to use
* Hooks to get more performance where it is important
 Need reasonable migration path for existing code
* Along with interoperability to avoid unneeded rewrite

m Any new HPC programming languages out there?

 Both MPI and OpenMP are being extended
* New approaches may emerge, esp. task-based; DSLs will appear

* Role of application developer in detecting/overcoming errors and
efficient energy consumption not yet clear

m Libraries and directives are familiar approaches
 Work under way to target MPIl, OpenMP to proposed exascale runtime
e Directive features may ultimately be integrated into base languages

‘ Ei) °
Iﬂ' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Productive Programming Models?

// Run one OpenMP thread per device per MPI node
#pragma omp parallel num_threads(devCount) if (initDevice())

{

// Block and grid dimensions
dim3 dimBlock(12,12);
kernel<<<1,dimBlock>>>();

cudaThreadExit();
}
else
{
printf("Device error on %s\n",processor_name);
}
MPI_Finalize();
return O;

5 Code from www.cse.buffalo.edu/faculty/miller/Courses/CSE710/heavner.pdf
iIRCS

TTTTTTTTTTTTTTTTTTTT
~ TATIONAL SCIENCE

Agenda

* The Directive-Based Approach to
Programming on the Node

www.openmp.org

The OpenMP ARB 2015
OpenMP

* OpenMP is maintained by the OpenMP Architecture Review
Board (the ARB), which

* Interprets OpenMP
» Writes new specifications - keeps OpenMP relevant
« Works to increase the impact of OpenMP

 Members are organizations - not individuals

— Current members

« Permanent: AMD, ARM, Cray, Fujitsu, HP, IBM, Intel, Micron, NEC,
Nvidia, Oracle, Red Hat, Texas Instruments

 Auxiliary: ANL, ASC/LLNL, BSC, cOMPunity, EPCC, LANL, LBNL,
NASA, ORNL, RWTH Aachen, SNL, TACC, University of Houston

« Attend IWOMP and OpenMPCon: http://www.iwomp.org

“High-level directive-based multi-language parallelism that is
performant, productive and portable”

Use of OpenMP

Moderate-size scientific, technical applications
— Initially, Fortran binding only

General-purpose multicore programming
— Tasks, C and C++ bindings

Embedded systems
— Tasks, kernel offloads

Large-scale parallel computations
— Usually, in conjunction with MPI

Entry-level parallel programmers

Many application developers think that the use of directives

means they don’t have to restructure code. That is not true.

OpenMP Py

 Oct 1997 — 1.0 Fortran

¢ Oct1998 — 1.0 C/C++ @) S
 Nov1999 — 1.1 Fortran: interpretations added

* Nov 2000 — 2.0 Fortran (F95, nested locks)

« Mar 2002 — 2.0 C/C++

 May 2005 — 2.5 Fortran/C/C++ (one API, multiple bindings, memory
model, ICVs, terminology)

« May 2008 — 3.0 (task execution model, explicit tasks, parallelization
of multiple loop levels, nested parallelism; wait policy)

« July 2011 - 3.1 (final, mergeable tasks, taskyield, atomic construct)

« July 2013 — 4.0 (support for devices, target and data mapping; SIMD
loops; thread affinity; task dependences; user defined reductions)

OpenMP 4.0
* Released July 2013

— http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

— http://www.openmp.org/mp-documents/
OpenMP Examples 4.0.1.pdf

* Main changes from 3.1: #pragma omp parallel

. #pragma omp for schedule(dynamic)
— Accelerator extensions for (1=0;1<N;I++){

— SIMD extensions NEAT_STUFF(1);
} /* implicit barrier here */

— Places and thread affinity

— Taskgroup and dependent tasks
— Error handling (cancellation)

— User-defined reductions

20

OpenMP 4.0 Affinity

. ~ L. 1
chip© chip i

coreO || corel]| core?2 || core3 cored || core5]| core6 || core?

[ee] []

* OpenMP Places and thread affinity policies

— OMP_PLACES to describe hardware regions
— affinity(spread|compact|true|false)

SPREAD: spread threads evenly among the places

et e e

coMPACT: collocate OpenMP thread with master

thread sssslsesclsssslsase] oo foasclossslsese

compact 4

Dependent Asynchronous Tasks
] |
TSI

#pragma omp parallel

#pragma omp master

for (i=0; i<matrix_size; i++) {

- 10 for (i=1;i<M;i++){

v

©CoONOOOLAWN =

12 rocessing block on column s/
13

= 14

o 15 rocessing block on row s/

- 16 | PracessBlockOnRow (.. —............)
17 }
]
I N I I /*** Elimination of Global Synchronization point ********
— 20
] 21 /xxxx Processing remaining inner block s/
» »: 22 for (i=1;i<M;i++
] 23 or (j=1;j<M;j++){
] 24 #pragma omp task in(2%) in(2*j+1)
L] 25 ocesslnnerBlock (.......... =) ;
2 GNU —+— 24 OpenUH-with ext —+—
22 . Intel -3¢ o5 BSC -3
OpenUH-without ext - / QUARK %
20 OpenUH-with ext & 20
SUN-Oracle /
o 18 PGl - 18 4
S 16 OmpSs - @ 1 /
= 1 14 y
<
2 12 12
EgT) 10 . N
- N B ¢ <l e R L et
3 8 8 00 A S
P
N .)/
4 4
- 2 b 2
SR | . ‘ ‘
1 2 4 8 16 24 32 48 1 2 4 8 16 24 32 48
Number of threads e :
__/ " Erm’ COMPUTATIONAL SCIENCE A Prototype Implementation of OpenMP Task Dependency Support; Priyanka Ghosh, Yonghong Yan,

Deepak Eachempati and Barbara Chapman; International Workshop on OpenMP (IWOMP) 2013

OpenMP Pertormance Tools Intertace

A single routine, used by

tools to communicate with OpenMP Runtime
t. OpenMP Program Library

runtime (object code) Collector API

int __omp_collector_api(void oneeel

*msg) v
Designed to support
events/states needed for executable (./a.out)
statistical profiling and
tracing tools

Extends original design
from Sun Microsystems
(Collector Interface)

request
events

‘ g) °
IH' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

OpenMP for Accelerators

#pragma omp target data device (gpu0) map(to:n, m, omega, ax, ay, b, \
f[0:n][0:m]) map(tofrom:u[0:n][0:m]) map(alloc:uold[0:n][0:m])

while ((k<=mits)&&(error>tol))
{

Il a loop copying ul][] to uold[][] is omitted here

#pragma omp target device(gpu0)

#pragma omp parallel for private(resid,j,i) reduction(+:error)”

for (i=1;i<(n-1);i++)
for (j=1;j<(m-1);j++)
{
resid = (ax*(uold(i-1][j] + uold[i+1][j])\

+ ay*(uold[iJ[-1] + uold[il[i+1])+ b * uoldfil[] - fili])/b:;

ui][j] = uold[i][j] - omega * resid;
error = error + resid*resid ;
} I/ rest of the code omitted ...

}

80

70

60

50

30

20

target

Copy in
- -
Copy out

remote dat

C
Tasks acc. cores
dffloaded to
hccelerator

Jacobi Execution Time (s)

V

—+—first version / /

target-data / /
—&—Loop collapse using linearization with static-even scheduling / /
—#—Loop collapse using 2-D mapping (16x16 block)

Loop collapse using 2-D mapping (8x32 block) /

Loop collapse using linearization with round-robin sched}&ﬁg /

// M
128x128 256x256 512x512 1024x1024 2048x2048

Matrix size (float)

Earl periences With The OpenMP Accelerator Model; Chunhua Liao, Yonghong Yan, Bronis R. de Supinski,
D ‘.mgﬁgmg{gj\gggpman; International Workshop on OpenMP (IWOMP) 2013, September 2013 24

COMPUTATIONAL SCIENCE

Looking Ahead: OpenMP 4.1

Device construct enhancements
— more control, flexibility in data movement between host and devices
— asynchronous support with nowait and depends
— multiple device types
— “deep copy” for pointer-based structures/objects
Loop parallelism enhancements

— extended ordered clause to support do-across (e.g. wavefront)
parallelism for loop nests

— new taskloop construct for asynchronous loop parallelism with control
over task grain size

Array reductions for C and C++
Under consideration:

— memory affinity

— task priorities (very likely)
and more!

3 iIACS e Draft of 4.1 already available at www.openmp.org

Further Ahead: OpenMP 5.0

Many features under consideration:
e Better device support

* |Interoperability and composability
* Locality and affinity

* General error model

* Transactional memory

* Additional looping constructs
 Recent C/C++ standards

* Enhanced tasking support (tasks outside parallel
regions?)

‘ Ei) °
Iﬂ' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

OpenACC Programming Model

* Announced Supercomputing 2011
— Initial work by NVIDIA, Cray, PGI, CAPS

* Directive-based programming for
accelerators

— For Fortran, C, C++
— Loop-based computations

 Compilers: PGlI, Cray, CAPS,
OpenARC, OpenUH, GCC (4.9)

* Attend OpenACC workshop, 12.
October (www.openacc.com)

OpenACC Features

* High-level directive-based programming API for accelerators
such as GPUs, APUs, Intel’s Xeon Phi, FPGAs and even DSP chips.

* Data directives: copy, copyin, copyout, etc
e Data synchronization directive: update

 Compute directives
— parallel: more control to the user
— kernels: more freedom to the compiler

 Three levels of parallelism: gang, worker and vector

e Commercial OpenACC compilers
— PGI, CRAY, PathScale
* Open source OpenACC compilers
— GCC 5.0, OpenARC, OpenUH, RoseACC, etc.

OpenACC Status

* Current Status
— 1.0: structured data region, computation offloading
— 2.0: unstructured data region, nested parallelism
— 2.5 (draft): OpenACC profiling interface

* Work in progress: 3.0 and later
— Data deep copy
— Multithreading and OpenACC
— Multiple devices, homogeneous and heterogeneous
— Multiple devices as a single virtual device
— Host as a device

‘ Ei) °
Iﬂ' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Complex Data Management in OpenACC

truct { struct {

strt
int *x; // dynamic size 2 int *x; // dynamic size 2
} R '/ dynamic size " Shallow Copy | bR // dynamic size 2
$pragma ata copy (] ; N [#pragma acc data copv(A[0:2])
R . > — — ~
. Host Memory: ’xECZ | x([1] ‘ ’ A[0].x { All].x ‘ [xi:] \x:v.: ‘
Device Memory: |x[01 |x[l: | |d:-.:C].x|dA[L].x| |x:C] |x[ll |
, Desp Copy |
(a) Shallow copy (b) Deep copy

Simple, elegant solution to deep copy problem is
a major challenge

Proposal adds shape and policy directives

Directive-based specification requires no
modification to underlying code

e OF Figure from TR-14-1, Complex Data
IACS s Management in OpenACC™ Programs

OpenACC Compiler Translation

* Need to achieve coalesced memory access on GPUs

#pragma acc loop gang(2) vector (2)
for (i = x1; i < X1; i++) {
#pragma acc loop gang(3) vector (4)
for (j = yi1; j < Y1; j++) {...... }
}

32 T T 1000 T

Map2_1 &S Map3_1 N
30 Map2_2 oo e Map3_2 beocast
P'(?ikéo :0) Map2_3 mmm Map3_3 mmmmm
j:0,12,. 28 Map2 4 850 1
rid 2% I |
block(1,0)
i:2,6,10,... __ 24 L 1 _
j:0,12,... 0 2
[0) L. 4 [0) | IR -
£ 22 £ 10
Fo2o 1 a
18 - .
1 - -
16
1 %% ANl ¢ 0.1 3
Jacobi DGEMM Gaussblur Stencil Laplacian Wavel3pt
Benchmark Benchmark
Double nested loop mapping. Triple nested loop mapping.

Compiling a High-level Directive-Based Programming Model for GPGPUs; Xiaonan Tian, Rengan Xu, Yonghong Yan,
Zhifeng Yun, Sunita Chandrasekaran, and Barbara Chapman; 26th International Workshop on Languages and Compilers for
Parallel Computing (LCPC2013)

Agenda

« Some Possible Directions

‘ g) °
IH' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

OpenMP on Low-Power Architecture, 2009

Multicore Navigator

Initialization
Initialization
- micro_task context
s slave thread #1 slave thread #1 slave thread #1
g’ send request ; i T
3 ‘ s
= Y
© .
o | Execute micro_task . -
= , , =
snoop for nequest snoop for nequest |-t snoop for nequest [t
Y Y Y
stem .Execute Execute Execute
s' “micro_task()” “micro_task()” “micro_task()”

Initialization
micro_task context
h 4 A J
send request / barrier »» barrier ’»

Execute micro_task()

barrier completion
msgs
A
End

B. Chapman, L. Huang, E. Stotzer, E. Biscondi, A. Shrivastava, A. Gatherer. Implementing OpenMP on a High Performance
Embedded Multicore MPSoC, pp 1-8, Proc. of Workshop on Multithreaded Architectures and Applications (MTAAP'09) In
conjunction with International Parallel and Distributed Processing Symposium (IPDPS), 2009.

Programming Model for Keystone

4)

OpenMP Accelerator Model

Quad A15 < Navigator/Shared Memory > Multicore DSPs

66AK2H SoC

7
]

OpenCL +
Tl extensions to OpenCL *

¥ Tl extensions enable OpenCL kernels to act as wrappers for C code with OpenMP regions

°
3 ; lﬂcs INSTITUTE FOR ADVANCED
\ COMPUTATIONAL SCIENCE

OpenMP+MCA Libraries on Freescale DSP, 2014

Use MxAPIs as the translation
layer for OpenMP
Translate C+OpenMP to C with
runtime function calls

e PowerPC-GCC as the back-end
to generate object files and
libraries

* Final executable file is generated
by linking the object file, our
OpenMP runtime library and the

MCA runtime library

(Papers at LCTES, PMAM, Talks at SIAM,
SRC Review Meeting, Articles in EE times)

OpenMP
source
code

Frontend
source-to-
source
translation

Bare C code

with OpenMP

runtime
library calls

Object
code

app.w2c.c

app.w2c.o

OpenMP
Runtime Library

MCA Libraries

libEOMP libMCA

app.out \

Executable
image running
on the board

°
(Q IH‘ S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Task-Based OpenMP Execution, 2002

Compiler translates “standard”
OpenMP into collection of tasks
and task graph

o Analyzes data usage per task
What is “right” size of task?
o Might need to adjust at run time

Runtime trade-off between
load balance, co-mapping of
tasks that use same data

In-situ mappings work best:
execute task where data is

T.-H. Weng, B. Chapman: Implementing OpenMP Using Dataflow Execution

Model for Data Locality and Efficient Parallel Execution. Proc. HIPS-7, 2002
G- IRCS sy iosarmses

OpenMP in an Exascale World

OpenX: prototype software
stack for Exascale systems

— HPXis runtime system
— Lightweight threads
— Thread migration for load
balancing, throughput.
Translating OpenMP -> HPX

— Maps OpenMP task and
data parallelism onto HPX

— Exploit data flow execution
capabilities at scale

— Big increase in throughput
for fine-grained tasks

Migration path for OpenMP
applications

XPRESS Migration Stack

MPI/OpenMP Application

OpenMP compiler

MPI OpenMP Thin Runtime

Glue

HPX

Legacy
stack

OpenX

OpenMP over HPX (on-going work)

Execution model: dynamic adaptive resource management;

message-driven computation; efficient synchronization; global name
space; task scheduling

OpenMP translation:

No direct interface to OS 0 LU Run Time on 40 Threads, size = 8192
threads 80

No tied tasks; threadprivate ? —e—intel

tricky, slow 62 ooy /.

Doesn’t support places,
private memory

OpenMP task dependencies

time (seconds)
g vl

via futures 10
HPX locks faster than OS 0

512 341 256 228 171 128 114 85 64
IOCkS Block Size

IH‘ S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

HPC Meets Big Data

 HPC vs. Big Data
— Flops vs. throughput
— Scientific computation vs. data analytics (machine learning)
— MPI+OpenMP vs. Hadoop/Spark/Cassandra...
— Big Data developers expect simple programming interfaces
d A productive programming environment for both?
— Accelerated processing for highly responsive applications

— Optimized data transfers using HPC techniques; minimized data
movement across entire application

— Execution scheduler to optimize response time, adapt

(1 Can HPC-like directives help real-time processing of big data?
— Increase scope of big data computations
— Along with relative ease of application development

‘ Ei) °
Iﬂ' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Agenda

* Tool Support for Porting Code

‘ g > °
IH' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

T3: Prefetch Data to Local
Memory or Change Data layout

ode Restructuring?

Heterogeneous node:

AMD1 5
‘;_ Opteron

AMD1
Opteron

do j=1,nv

do i=1,nv

div (i, j)=elem%rmetdetp (i, j) » (rdx*div (i, j) &
+rdy*vvtemp (i, j))

: _Data distribution for elem('?M elemLA/CPLEJy

:" subroutine compute_and_apply_rhs (npl, coord
3 deriv,nets,nete, compute_diagnostics)

br1§EJT1()r3/

© ieets, e T5: Parallelism for OpenMP (thread manages

do g=1,qsize
if tracerA@@elﬁlfat@rasl)m:TRACERADv TOTAL_DIVERGENCE) then
do k=1,nlev
gradQ(:,:,1)=elem(ie)%state%v(:,:,1,k,n0)+elem(ie)%statesQdp(:,:,k,q,n0)

gradQ(:,:,2)=elem(ie)%state%v(:,:,2,k,n0)+elem(ie)%statesQdp(:,:,k,q,n0)
divdp = dlvergence_sphere(gradQ,deriv,elem(ie))
do j=1,nv L. .
a0 i=1,v T4 Inlining to increase work
gtens (i, 3,k,q)=-divdp (i, j)
enddo
enddo

i T7: Overlap computations & comms.

2
3
4
5
6
1
8
9:
10:
11
12
13
14
15
16
17 . e .
18 T5: Data scoping, & outlining final kernel

19: call bndry_exchangeV (hybrid, edgeadv)
200 ...,
21: end subroutine

T6: Distribute work across multiple cores/GPUs

¥ Execution Queue)
: function divergence_sphere ' [. L
do j=1,nv (Dual Warp lssue l l Dual Warp bssue l Dual Warp ksue
do i=1,nv 0 4 1 + 15
gv (i, j,1l)=elemSmetdet (i, j) x (elem%Dinv(1l,1,1i, j) ..
gv (i, j,2)=elemSmetdet (i, j) x (elem%Dinv(2,1,1i, j) ~.. "
enddo S
enddo -
do j=1,nv . E
do 1=1,nv T2: Loop Fusion to merge kernels, =
dudx00=0.0d0 g
dvdy00=0.0d0 data reuse =
do i=1,nv
dudxéo = dudx00 + deriv%Dvv (i, 1l) *gv (i, J , 1) Special i Seecial Sochl Spechal
dvdy00 = dvdy00 + deriv%Dvv (i, 1) *gv (3 ,i,2) Fancticn Fudn'o\ Fuscticn Funtion Functes Fanction
end do Unk unit U u Ust Unk
div(l ,3) = dudeO
vvtemp (J Sk = dvdy00
end do Uset
T T1 Identify Levels of Parallelism for GPU xwfm

Device Memory

end do
end do

end f(::’ilip

T0O: Port kernel for GPU

divergence_sphere

IH‘ S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Fermi GPU

Runtime False Sharing Detection

Original Version Optimized Version
B 1-thread ™ 2-threads ® 1-thread ™ 2-threads
W 4-threads " 8-threads 4-threads " 8-threads
8 8
_§-6 §-6
o 4 ¢ 4
C% 2 ¢% 2
ool il o .- dl il ol o
& o & & & g & &
&6\ e \(\b &S S @6‘ SO \(\6 S N
(}OQ ()\@% %Q / Y &65) %\Oo.’ ®®6 Ko.)@ / Q§ \69
< @ & & O & @ & & O
,5K> \Q)4 ‘%6 S (b\> QQA "'O\$ $
o o
$ ¢

B. Wicaksono, M. Tolubaeva and B. Chapman. "Detecting false sharing in OpenMP
applications using the DARWIN framework”, LCPC 2011
EDiACS s appi 9

Energy Management Tools

OpenMP runtime settings
can be adjusted statically
and dynamically for best
performance

— Number of threads,
scheduling policy and chunk
size, wait policy, binding
policy, may all affect
performance

Selections are not

independent of power cap

Modeling may help select
settings to optimize both
energy and execution
performance

%Improvement

Improvement on Best Configuration compared to default

10 - M
S | T |
F

0 ‘ _[_l || O ‘

S5 10 t £ b 2] |
101 g e p i
15 - 3
-20 §)
-25 - Different Aspects

B 55w ® 70w LI85W [C100W LI115W

%-age improvement in Co-MD application
under different power capping

IHCS INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Where are Directives Headed?

J OpenMP continues to evolve to meet new needs
— Broad user base; yet strong HPC representation

— Paying more attention to data locality, access pattern
(locality, affinity); it has always mattered for performance

— A prescriptive model, performance fairly well understood
— Evolving toward tasking, reducing reliance on barriers

(1 OpenACC more focussed effort, faster progress
— Will it be subsumed by OpenMP?
d Might require significant rewriting of code

— Need tools to help create tasks, obtain high locality, tune
for energy and performance

