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A global race is under way …

Sputnik (1957)
China joins U.S. and Japan in global 

t b ild th f t t trace to build the fastest computer
- John Markoff, Aug 19, 2005

NSF Leadership-
Class SystemClass System 
Acquisition -
Creating a Petascale 
Computing 
Environment for 
Science and 
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Japanese Earth Simulator (2002)

Sc e ce a d
Engineering 

U.S. Petascale (2008-2010)



Recent reports

• NSF Workshop Report on Petascale 
C SComputing in the Biological Sciences, David 
A. Bader, Allan Snavely, Gwen Jacobs, August 
29 30  2006  A li  VA29-30, 2006, Arlington, VA.

• Petascale Computing: Algorithms and 
Applications, David A. Bader (ed.), Chapman 
& Hall/CRC Computational Science Series,   
© 2007. (ISBN: 9781584889090)
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Georgia Tech and Petascale Computing

• 6th ranked academic institution in the June 2006 Top100 List of most 
capable supercomputers in the world

• Klaus Advanced Computing Building (most advanced computing building 
in the world!) opened 26 October 2006

» Created a Computational Science & 
Engineering department in Fall 2005.

» IBM Shared University Research
for Cell Broadband Engine

» Cray XMT consortiumCray XMT consortium

• Sun Academic Excellence Grant for Sun Fire T2000 servers

» Microsoft Research Faculty Award for parallel programming of multicore 
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Sony-Toshiba-IBM Cell
Center of Competence @ Georgia TechCenter of Competence @ Georgia Tech

“Georgia, not Austin, gets chip 
center,” Bob Keefe, Austin 
A i SAmerican-Statesman,
November 14, 2006
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“Practical” Graph Theory

• In Königsberg, a river ran through the city such that in its center was an 
island, and after passing the island, the river broke into two parts. Seven 
b id   b ilt  th t th  l  f th  it  ld t f   t bridges were built so that the people of the city could get from one part 
to another. 

• The people wondered whether or not one could walk around the city in a 
way that would involve crossing each bridge exactly onceway that would involve crossing each bridge exactly once.

• Leonhard Euler, circa 1735 
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Source: The Math Forum



Graph problems arise from a variety of sources
Power Distribution Networks Internet backbone Social Networksower D str but on Networks Internet backbone Soc al Networks

Graphs are everywhere!

P  k
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Ground Transportation Tree of Life

Protein-interaction networks

Sources: C. Faloutsos talk [IPAM 05]



Giot L, Bader JS, …, Rothberg JM,
A protein interaction map of Drosophila melanogaster
S i  302  1727 1736  2003Science 302: 1727-1736, 2003.
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Phylogenyy g y

Orangutan Gorilla Chimpanzee Human
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Computational Phylogeny
GRAPPA

• Genome Rearrangements Analysis 
under Parsimony and other

Campanulaceae
• Bob Jansen, UT-Austin;

Li d R b C t l W hi t U under Parsimony and other 
Phylogenetic Algorithm

• Freely-available, open-source, 
GNU GPL

• already used by other

• Linda Raubeson, Central Washington U

CIPRES aims to establish 
the cyber infrastructure 

• already used by other 
computational phylogeny groups, 
Caprara, Pevzner, LANL, FBI, 
Smithsonian Institute, Aventis, 
GlaxoSmithKline PharmCos

Tobacco

the cyber infrastructure 
(platform, software, 
database) required to 

attempt a 
reconstruction of the 

GlaxoSmithKline, PharmCos.
• Gene-order Phylogeny Reconstruction

• Breakpoint Median
• Inversion Median

• over one-billion fold speedup fromreconstruction of the 
Tree of Life

(10-100M organisms)

• over one-billion fold speedup from 
previous codes

• Parallelism scales linearly with the 
number of processors
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The Tree of Life



Homeland Security: Terrorist Networks
• Certain activities are often suspicious not because of the characteristics 

of a single actor, but because of the interactions among a group of 
actors.actors.

• Interactions are modeled through a graph abstraction where the entities 
are represented by vertices, and their interactions are the directed edges 
in the graph. in the graph. 
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Figure Credit: Uncloaking Terrorist Networks, V.E. Krebs, 
First Monday, 7(4), April 2002.

Figure Credit: Graph-based technologies for intelligence 
analysis,T.  Coffman, S. Greenblatt, S. Marcus, Commun. 
ACM, 47(3):45-47, 2004. 



Information Overload

• Challenge: Piecing the data together and extracting critical, 
relevant information in a timely manner 

• Semantic Graphs (or Attributed Relational Graphs) are one • Semantic Graphs (or Attributed Relational Graphs) are one 
way to integrate data from disparate sources
– Vertices represent people, places, locations, events, etc. 

Edges represent the relationships between the vertices
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– Edges represent the relationships between the vertices
– Semantic graph encodes web of relationships



Simple Example
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Advantages of Semantic Graphs

• Much smaller than raw data.  Can fit in memory of large 
computercomputer
– Fast response to queries
– Pre-join of database

• Combine data from different sources and of different types

• Some common intelligence and law enforcement queries are 
naturally posed on graphsy p g p
– Particularly for the terrorist threat
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Query Example I: Short Paths
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Query Example II: Motif Finding

Image Source:
T. Coffman, 
S GreenblattS. Greenblatt, 
S. Marcus, 
Graph-based 
technologies for 
intelligence 
analysis, 
CACM, 47
(3, March 2004): 
pp 45-47
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The Big Picture

Mongo
Databases

Fast
Graph
Query

Analyst makes
queries.Graph resides in memory 

of supercomputer

Extract “Window”Extract “Window”

of supercomputer.
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High Latency Query



Graph algorithms

• Driving applications are not traditional HPC:
h lth  t i  it  i f ti  – health care, proteomics, security, informatics, …

F d t l b t ti• Fundamental abstraction
– Standard introductory material covered in a computer 

science course on data structures and algorithms  butscience course on data structures and algorithms, but...

• There are few (if any) efficient distributed-memory • There are few (if any) efficient distributed-memory 
parallel implementations of even the simplest 
algorithm for sparse, arbitrary graphs!
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Informatics Graphs are Tough

• Very different from graphs in scientific computing!
G h   b  – Graphs can be enormous

– Power-law distribution of the number of neighbors
– Small world property – no long pathsSmall world property no long paths
– Very limited locality, not partitionable
– Highly unstructured
– Edges and vertices have types

• Experience in scientific computing applications 
provides only limited insight

Six degrees of Kevin Bacon
Source: Seokhee Hong
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provides only limited insight.



Architecture

• Challenges:
– Runtime is dominated by 

l

• Desired Features:
• Low latency / high 

b d idthlatency
• Random accesses to 

global address space
• Perhaps many at once

bandwidth
– For small messages!

• Latency tolerant
• Light weight synchronization p y

– Essentially no 
computation to hide 
memory costs
A  tt  i  d t  

• Light-weight synchronization 
mechanisms

• Global address space
– No graph partitioning required– Access pattern is data 

dependent
• Prefetching unlikely to help
• Usually only want small 

No graph partitioning required
– Avoid memory-consuming 

profusion of ghost-nodes
– No local/global numbering 

conversionsUsually only want small 
part of cache line

– Potentially abysmal 
locality at all levels of 
memory hierarchy

conversions

• One machine with these 
properties is the Cray MTA-2
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memory hierarchy – And its successor, the Cray 
XMT (“Eldorado”)



How Does the MTA Work?

• Latency tolerance via massive multi-threading
E h  h  h d  t f  128 th d– Each processor has hardware support for 128 threads

– Context switch in a single tick
– Global address space,  hashed to reduce hot-spots
– No cache or local memory   Context switch on memory request– No cache or local memory.  Context switch on memory request.
– Multiple outstanding loads

• Remote memory request does not stall processor
– Other streams work while your request gets fulfilledOther streams work while your request gets fulfilled

• Light-weight, word-level synchronization
– Minimizes access conflicts

• Flexibly supports dynamic load balancingFlexibly supports dynamic load balancing
• Notes:

– MTA-2 is 7 years old
– Clock rate is 220 MHz
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– Largest machine is 40 processors



Our recent work on Multithreaded Algs.

• List ranking and connected components.
– List ranking runs 40 times faster 
– Connected components runs 6 times faster
– on 220MHz Cray MTA-2 processors compared with a commodity 

400MHz Sun SMP. 
[Bader  Cong  Feo; ICPP 2005]– [Bader, Cong, Feo; ICPP 2005]

• Graph theory applications
Parallel breadth first search; approximate clique extraction; DARPA – Parallel breadth-first search; approximate clique extraction; DARPA 
SSCA2 [Bader, Madduri, Feo, in progress]

– st-connectivity [Bader, Madduri; ICPP 2006]
– Betweenness Centrality [Bader, Madduri; ICPP 2006]y [ , ; ]
– Advanced Shortest Paths [Croback, Berry, Madduri, Bader; MTAAP 

2007]
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Case Study 1: Breadth-First Search (BFS)

• Sequential BFS:                
using a FIFO queue

• Recent algorithms and 

)( nmO +
BFS on Scale-free (SF-RMAT) graphs
(200 million vertices, 1 billion edges)Recent algorithms and 

implementations for 
handling large-scale graphs: 

– graph partitioning [Yoo et. al. 
2005]
external memory [M  t  l  s)

7
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– external memory [Meyer et. al. 
2006]
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Large-Scale Graph Results: 
Breadth-First Search

Multithreaded Random graph 2.3 s (p=40) Works well for 

Problem Graph Instance Result Comments

Breadth-First Search

Multithreaded 
(OUR RESULT)

Random graph
n=228 vertices
m=230 edges

2.3 s (p 40)
73.9 s (p=1)
Cray MTA-2

Works well for 
sparse real-world 
graphs

External Memory Random graph 8 9 HOURS State-of-the-art External Memory 
[Ajwani et al., 2006]

Random graph
n=228 vertices
m=230 edges

8.9 HOURS 
(MM_BFS_R)

State of the art 
external memory 
BFS

Multithreaded Random graph 4 53 s Largest arbitrary Multithreaded 
(OUR RESULT)

Random graph
Scale-free graph
n=400 M vertices
m=2 B edges

4.53 s
5.2 s
(p=40)
Cray MTA-2

Largest arbitrary 
BFS known results

edges C ay

Distributed 
Memory

[Yoo et al , 2005]

Random graphs
n=3B vertices
m=32B edges

4.7 sec on 
p=32K
IBM BG/L

Works only for Erdos-
Renyi random 
graphs.[Yoo et al., 2005] m 32B edges IBM BG/L graphs.

WORKS ONLY FOR SYNTHETIC GRAPHS
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Case Study 2: Social Network Analysis

• Centrality metrics: Quantitative measures to capture 
the importance of a node/vertex/actor in a graphthe importance of a node/vertex/actor in a graph
– Degree, Closeness, Stress, Betweenness

• Identifying central nodes in large complex networks • Identifying central nodes in large complex networks 
is the key metric in a number of applications:
– Biological networks, protein-protein interactionsBiological networks, protein protein interactions
– Sexual networks and AIDS
– Identifying key actors in terrorist networks
– Organizational behavior
– Supply chain management
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– Transportation networks



Biological Complex Networks

• Protein-interaction networks 
(PINs), signal transduction ( ), g
networks, biological pathways, 
food-webs

• PIN analysis: Novel protein • PIN analysis: Novel protein 
function prediction, 
identification of critical nodes

• High-throughput experimental 
techniques Î lot of biological 
data

• Protein-interaction datasets 
are available for yeast (high-
confidence)  human  fly

Giot L, Bader JS, …, Rothberg JM,
A protein interaction map of Drosophila melanogaster
S i 302 1727 1736 2003
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confidence), human, fly Science 302: 1727-1736, 2003.



Our Contributions

• Graph-theoretic analysis of the Human protein 
i t ti  t k  i i  l  18 000 interaction network, comprising nearly 18,000 
proteins and 44,000 interactions.

[B d M dd i  HiCOMB 2007]– [Bader,Madduri; HiCOMB 2007]

• Parallel algorithms for analysis of large-scale 
i t ti  t kinteraction networks
– [Bader, Madduri; ICPP 2006]

C f• Comparison of the yeast and human protein 
interaction networks, over time.
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Human PIN: Degree Distribution

HPIN d t t

• The degree distribution is 
similar to the yeast protein 

Lehner-Fraser human PIN (includes predicted interactions)
Degree distribution (6228 vertices, 35902 edges) 

10000

HPIN dataset
Degree distribution (18669 proteins, 43568 interactions) 

10000

interaction network 
(unbalanced, few high-degree 
proteins)

qu
en

cy 100

1000

qu
en

cy 100

1000 • Power-law graph models can 
mimic the degree distribution 
of PINs

Fr
eq

1

10Fr
eq

1

10 • Protein with the highest 
degree: Solute carrier family 
2 member 4, Gene Symbol 

Degree

0.1 1 10 100 1000
0.1

Degree

0.1 1 10 100 1000
0.1

SLC2A4, HPRD ID 00688, 
biological function: transport
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Betweenness Centrality (BC)

• Key metric in social network analysis
[Freeman ’77, Goh ’02, Newman ’03, Brandes ’03][Freeman 77, Goh 02, Newman 03, Brandes 03]

( ) ( )st v
BC v

σ
∑( ) ( )

s v t V st

BC v
σ≠ ≠ ∈

= ∑

• : Number of shortest paths between vertices s and t
• : Number of shortest paths between vertices s and t 

passing through v
)(vstσ

stσ

passing through v

• Exact BC is compute-intensive
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Exact BC is compute intensive



BC Algorithms

• Brandes [2003] proposed a faster sequential 
f Calgorithm for BC on sparse graphs

– time and          space for weighted )(nO)log( 2 nnmnO +
graphs

– time for unweighted graphs)(mnO

• We designed and implemented the first 
parallel algorithm:
– [Bader, Madduri; ICPP 2006]
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BC Computation: Parallel Performance 
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Number of threads



BC Analysis: 
Protein-protein interactionsote p ote te act o s
• We recently computed betweenness centrality scores for the 

human genome1 protein interaction networkg p
– [Bader, Madduri; HiCOMB 2007]

Human Genome Protein Interactions
Degree vs. Betweenness Centrality
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1 Lehner, Fraser. A first draft human protein interaction map, 
http://genomebiology.com/2004/5/9/R63



BC Analysis: 
Protein-protein interactions

Human Genome core protein interactions
Degree vs. Betweenness Centrality

43 interactions
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BC Implementation Details

• We have designed and implemented parallel 
betweenness centrality for two shared memory y y
platforms:

S t i l lti  (SMP )– Symmetrical multiprocessors (SMPs)
• Modest number of processors
• Coarse-grained implementation, BFS/SSSP computations are 

done concurrentlydone concurrently
• Implemented on IBM p570

– multithreaded architecturesmultithreaded architectures
• Thousands of hardware threads
• Individual BFS/SSSP computation is parallelized
• Implemented on Cray MTA-2
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IBM p5 570

• 16-way Power5 symmetric multiprocessor 
• 1 9 GHz processor• 1.9 GHz processor
• 256 GB physical memory
• 32KB L1D  1 9MB L2  • 32KB L1D, 1.9MB L2, 

32MB L3
• 8-way superscalar• 8-way superscalar
• SMT on each core

• Supports a C and POSIX threads 
parallel implementation
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parallel implementation



BC for IMDB movie actor network

Real-world instance: an undirected graph of 392,400 vertices (movie actors) 
and 31,788,592 edges. An edge corresponds to a link between two actors, if 
they have acted together in a movie. The dataset includes actor listings from 

ND-actor : IMDB movie-actor network
(392,400 vertices and 31,788,592 edges)

100000

y g g
127,823 movies.

Betweenness Centrality computation for the ND-actor graph
(392,400 vertices and 31,788,592 edges)
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No. of processors 
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Degree Distribution: Scale-free



BC for web graph
Betweenness Centrality computation for the ND-web graph

(325,729 vertices and 1,497,135 edges)
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Conclusions

• “High-Performance Computing” needs to move from 
FP-centric to data-centric computingFP centric to data centric computing
– Impact to emerging areas such as life sciences and 

informatics

• Several architectural features reduce the 
programmer’s burden and enable high-performance 
large-scale applications with irregular data large-scale applications with irregular data 
structures

• How will we program multicore processors, p g p ,
especially for these applications?

• Will Microsoft and Intel reach this before the 
t diti l HPC it ? ☺
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traditional HPC community? ☺


