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A global race is under way ...
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Mightiest Computer

‘ i
€
]
3

By JOHN MARKOF,

A New Arms Igace to Build the World’s

Chinajoins U.S. and Japan in global
race to build the fastest computer
- John Markoff, Aug 19, 2005
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Recent reports

* NSF Workshop Report on Petascale
Computing in the Biological Sciences, David
A. Bader, Allan Snavely, Gwen Jacobs, August
29-30, 2006, Arlington, VA.

* Petascale Computing: Algorithms and
Applications, David A. Bader (ed.), Chapman
& Hall/CRC Computational Science Series,
© 2007. (ISBN: 9781584889090)
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Georgia Tech and Petascale Computing

* 6! ranked academic institution in the June 2006 Top100 List of most

capable supercomputers in the world
®
G s00

UPERCOMPUTER SITES

e Klaus Advanced Computing Building (most advanced computing building
in the world!) opened 26 October 2006

» Created a Computational Science &
Engineering department in Fall 2005.

» IBM Shared University Research
for Cell Broadband Engine

» Cray XMT consortium

e Sun Academic Excellence Grant for Sun Fire T2000 servers

»  Microsoft Research Faculty Award for parallel programming of multicore
processors

Georgia College off
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Sony-Toshiba-IBM Cell
Center of Competence @ Georgia Tech

TUESDAY, NOVY. 14, 2008
sass

The Atlanta Journal-Constitution

Bus
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Ga. Tech lands
research facility

By BOB KEEFE
bkeefeSajccom

Three of the biggest names in
technology plan bo announce today
they will start a research center st
Georgia Tech to explore ways to ex-
pand the reach of a promising new
semiconductor design.

Sony Corp., IBM Corp. and Toshi-
ba Corp. compare their new “Cell”
microprocessor i 8 SupCreompuler
on a chip that can handle some ap-
plications 10 times faster than tradi-
Honal computer chipe.

The technology that the com
panies jointly developed in Austin,
“Texag, nver five weare at o cost of
$400 million [s debuting in Sony's
new PlayStationd video game con
sole. The $500 console went on sali:

SONY TOSHIBA

in Japan last week and hits U5, store
shelveson Friday,

Mow, the companiés want 1o teke
the Cell technolagy much further.

Wwith funding from the three Cell
partners and additional money from
Georgia Tech amd outside grants,
researchers al Tech's new STT Center
of Competence will explore ways to
adapk the technology for other indus-
fries, including biotech, nance and
digital media creation

Sony, Toshiba and IBM are provid-
inganinitialinvestment of $320,000,
while Techis putting in £230,000 and
another $100,000 is coming from a
Mational Science Foundation grant,

At the conter, ta he lorated in the
school’s new Christopher W. Klaus

hPIus.rgrrlI‘ESEllCH.DG

David A. Bader,

Petascale Computi

Research:

» Continued from D1

Advanced Computing Bulld-
ing, researchers will also teach
students and outside compa-
nies how toprogram compubers
and write software for the new
type of chip. There will be four
faculty members involved in
the project.

Landing the center puts
Georgla Tech at the forefront
ol a groundbreaking new lype
of semiconductor design. Da-
vid Dader, executive director
of the school's high-perfor-
mance compuling program,
said he believes the center will
bz the only one of its kind in the
United States.

W really sec this as the
future of technology and inno-
wation Bader sald. “This iz =0
high-impact.”

Austin bypassed

In picking Georgia Tech for
the Center of Campelence, the
Cell partners sidestepped Aus-
tin as well as other hlgh-ll:r_'h
huabs across the country. Inad-
dition to the University of Tex-
as, mare than a dozen schools
around the country were vying
to land the center, according to
officials invalved.

“Texas universities were
absolutely part of the consid-
eration,” said Hina Shah, the
Austin-based

Cell deveop-
r

“Georgia, not Austin, gets chip
center,” Bob Keefe, Austin
American-Statesman,
November 14, 2006

ment program director at TEM.
Bul Georgia Tech won out in the
end, she said, partly becauseits
curriculum and areas of expar-
tise matched up better with the
interests of the three compa-
nies invialved,

For Georgia Tech, the center
is the latest in a serfes of nig
wins and incieased prominence
for the College of Gomputing.

In part, the school benefifed
from its extensive programs in
high-performance computing,
digital media and video game
design.

But since the 20021 arrival
as dean of Rich DeMillo, the
former chief tecknical officer
for Hewlett-Packard Co., the
school has redesigned ils cur
riculum to focus less on com-
puter scicnce theory and more
on real-world applications.

iln many ways, we found
them tobe much more ground-
ed abont forusing on what's
needed, not 10 yezrs from now,
but what's needed today and
tomorrew,” Shah said.

“That made a huge differ-
ence !

Mass Chatani, Sory's se-
nicr general manager for Cell
development, caid in a stafe-
ment that the “collaboration
wilh the Collkege of Computing
at Georgia Tech will create in-

Georgia Tech
comput-

ing direclor
David Bader
believes the
center will be
the only ane
ofits kind in
the country.

nowvative applications for Cell
processors.”

The Cell chip design is only
in its infancy and has a lot 1o
prove. The chip isn't expected
to make a big dent in the tradi-
tional semiconductor market
controlled by Intel Corp. and
Advanced Miero Devices Inec.
anytime soon. Reaching inlo
other market: won't be easy
either.

Stll, what makes Cell so
promising is its potential pow-
er, expecially when il comes lo
graphics-intensive programs
like wideo games, broadband
Internet video processing and
other digital media applica-
tioms.

Just recently, Intel releazad
its first “dual core” and “quad
core” oprocessors  Hhat
essentially puttwo or four pro-
ressnrs on onechip,

Cell chips have already
leapirogeed that capability.
The chips in Sony's PlaySta-

Tech wins center

tion3, for instance, essentially
have nine cores — eight unique
sub-processors that work in
connection with a central pro-
tessor.

16 cores a possibility
Future Cell designe could

have as many as 16 sub-pro-
cessing cores, which could
dramatically increase the speed
and the number of applica-
tions Cell -equipped computers
couldhandle.,

#This really is a new era in
performance,” Jim Kahle, an
IBM fellow who oversaw the
chip’s design in Auslin, said in
annoaneing the first Cell chipe
in San Francisco last vear.

Sony has the most rding
on Cell. The Japanese giant is
counting cn the chip to help it
regain ground in new technol-
ogy develapment that it lost in
areas like digital music.

Along with its video same
machines, Sony is exploring
putting Cell processors into a
wide arrayof products, inchad-
ing personal computers, televi-
sions and mobile phones.

Tashiba plans to use Cell
processors in its TV sets and in

other prodocts.
IBM already has introduced
werful computer  servers
hased on the design.




“Practical” Graph Theory

* |n KOnigsberg, a river ran through the city such that in its center was an
island, and after passing the island, the river broke into two parts. Seven
bridges were built so that the people of the city could get from one part
to another.

* The people wondered whether or not one could walk around the city in a
way that would involve crossing each bridge exactly once.

e Leonhard Euler, circa 1735

-. Leonard Euler

Source: The Math Forum G =
eorgia College off =
Tech 7
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Graph problems arise from a variety of sources
Power Distribution Networks Internet backbone Social Networks

The Social Structure of “Countryside™ School District

O White
@ Black
& MixedOther

Poirks Celerad by Race Q

Graphs are everywherel
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P e — Emcaoa Protein-interaction networks

Ground Transportation Tree of Life
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Giot L, Bader JS, ..., Rothberg JM,

A protein interaction map of Drosophila melanogaster

A
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Interaction Ratings
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David A.

Bader, Petascale Computing for Large-Scale Graph Problems

AW SO [ SIS S 0
Tech



Phylogeny

Orangutan Gorilla Chimpanzee

-

Corbisictn

Georgia GCaollege off
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Computational Phylogeny

GRAPPA

Campanulaceae

* Bob Jansen, UT-Austin;
 Linda Raubeson, Central Washipdton O

Tobacco

CIPRES aims to establish
the cyber infrastructure
(platform, software, °
database) required to
attempt a
reconstruction of the e
Tree of Life

(10-100M organisms)*®

BRCHES

ELCARY A,

EACTERIA

The Tree of Life

David A. Bader, Petascale Computing for Large-Scale Graph Problems

Genome Rearrangements Analysis
under Parsimony and other
Phylogenetic Algorithm
» Freely-available, open-source,
GNU GPL
» already used by other
computational phylogeny groups,
Caprara, Pevzner, LANL, FBI,
Smithsonian Institute, Aventis,
GlaxoSmithKline, PharmCos.
Gene-order Phylogeny Reconstruction
» Breakpoint Median
* Inversion Median
over one-billion fold speedup from
previous codes
Parallelism scales linearly with the
number of processors

Georgia Caollege off
Tech Coempuiing 11



Homeland Security: Terrorist Networks

e C(Certain activities are often suspicious not because of the characteristics

of a single actor, but because of the interactions among a group of
actors.

* |Interactions are modeled through a graph abstraction where the entities

are represented by vertices, and their interactions are the gkected edges
in the graph. s

Olamal Beghat
Pattern m E T Hamal Dacud~ Lawoma Cantlllar
/ Factory Yserve Z%t Honda 34 East St Fvora i ateda
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Figure Credit: Graph-based technologies for intelligence enamaanan "
analysis,T. Coffman, S. Greenblatt, S. Marcus, Commun. Figure Credit: Uncloaking Terrorist Networks, V.E. Krebs,
ACM, 47(3):45-47, 2004. First Monday, 7(4), April 2002.

eorgia College of
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Information Overload

Attributed Relational Graph
® 13
16 2
15 1 L4 ® ;
M ) .
174 19 5@
20 18 12 4
)
L 6
e 22
11 8 7
[
23 ® 9
21
10®
Legend
28 ® Workplace Friends with
25 24 ® Town / Works at
@ Person Located in
27 Lives in
o Y 26

e Semantic Graphs (or Attributed Relational Graphs) are one
way to integrate data from disparate sources

- Vertices represent people, places, locations, events, etc.
- Edges represent the relationships between the vertices
- Semantic graph encodes web of relationships

Georgia College of
David A. Bader, Petascale Computing for Large-Scale Graph Problems TeCh ©@‘mm@
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Simple Example

Attributed Relational Graph
® 13
16 2
3
15 14 1 4 °
®
1?. 19 5@
18 12 4
20
°
® 6
e 22
11 8 7
°®
23 o9
21
10®
Legend
28 ® Workplace Friends with
25 24 ® Town /" Works at
® Person Located in
27 o -6 Lives in o
4 TCOTT \_/uuv]_,./\%m@

David A. Bader, Petascale Computing Tor Large-Scale Graph Problems
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Advantages of Semantic Graphs

e Much smaller than raw data. Can fit in memory of large
computer
- Fast response to queries
- Pre-join of database

e Combine data from different sources and of different types

e Some common intelligence and law enforcement queries are
naturally posed on graphs
— Particularly for the terrorist threat

Georgia Caollege off
David A. Bader, Petascale Computing for Large-Scale Graph Problems TeCh ©@m‘ﬁ®@ﬂﬁﬂm@ 15



Query Example |: Short Paths

16
17
o 18
20
Y
¢ 22

@® 13

15

=

19

®
21 23/.
28/
25 9 24
27
o ® 26

Attributed Relational Graph
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1 ® PY
®
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12 4
L
6
11 8 7
® 9
10®
Legend
® Workplace Friends with
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@® Person Located in
Lives in

L
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e

Query Example II: Motif Finding

Pattern
/ Factory observe
observe
Persun eside Person
resld
rent buy
Truck Fertilizer
~

Phone call
Gasolme\
’ﬁ|
/Bew

g

Bentley

|

Jennifer

R Gy £

21 West St Hanca 34 East St

x\@aNa{w L
\

\.\TDiT! “\\ ‘\.
Acme, Inc.
\ \obsewe
esi
BIIE\ res?/
Truck / \buy
123 Main St
Dhcme call Fertlllzer
Observed Activity

David A. Bader, Petascale Computing for Large-Scale Graph Problems

LA

Image Source:
T. Coffman,

S. Greenblatt,
S. Marcus,
Graph-based
technologies for
intelligence
analysis,
CACM, 47

(3, March 2004):
pp 45-47

lege off
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1l
The Big Picture

Attributed Relational Graph
16 [ BE]

Fast

Graph
« Query

SI_I

2 ¢
T
iz
S
L

B o

_ Analyst makes
Graph resides in memory
of supercomputer.

queries.

Extract “W NV

Georgia Caol 2

Ie
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Graph algorithms

e Driving applications are not traditional HPC:
- health care, proteomics, security, informatics, ...

e Fundamental abstraction

- Standard introductory material covered in a computer
science course on data structures and algorithms, but...

 There are few (if any) efficient distributed-memory
parallel implementations of even the simplest
algorithm for sparse, arbitrary graphs!

Georgia College
David A. Bader, Petascale Computing for Large-Scale Graph Problems kCh \ C@m'IBUt" 19
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Informatics Graphs are Tough

e Very different from graphs in scientific computing!
- Graphs can be enormous
- Power-law distribution of the number of neighbors ; |
- Small world property - no long paths Ty
- Very limited locality, not partitionable
— Highly unstructured
- Edges and vertices have types

Six degrees of Kevin Bacon
Source: Seokhee Hong

e Experience in scientific computing applications
provides only limited insight.

Georgia College of
David A. Bader, Petascale Computing for Large-Scale Graph Problems -.bch \/ C@m!pUtl 20



Architecture
* Challenges: * Desired Features:
- Runtime is dominated by ¢ Low latency / high
latency bandwidth
 Random accesses to - For small messages!
global address space e Latency tolerant
» Perhaps many at once e Light-weight synchronization
- Essentially no mechanisms

computation to hide
memory costs

— Access pattern is data

 Global address space
- No graph partitioning required
- Avoid memory-consuming,

dependenfc | profusion of ghost-nodes
* Prefetching unlikely to help - No local/global numbering
e Usually only want small conversions
part of cache line
- Potentially abysmal e One machine with these

locality at all levels of

memory hierarchy properties is the Cray MTA-2

- And its successor, the Cray
XMT (“Eldorado”)

Georgia Caollege off
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How Does the MITA Work?

Latency tolerance via massive multi-threading
- Each processor has hardware support for 128 threads
- Context switch in a single tick
- Global address space, hashed to reduce hot-spots
- No cache or local memory. Context switch on memory request.
- Multiple outstanding loads
Remote memory request does not stall processor
- Other streams work while your request gets fulfilled
Light-weight, word-level synchronization
- Minimizes access conflicts
Flexibly supports dynamic load balancing
Notes:
- MTA-2 is 7 years old
- Clock rate is 220 MHz
- Largest machine is 40 processors

David A. Bader, Petascale Computing for Large-Scale Graph Problems — e
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Our recent work on Multlthreaded Algs.

.

e List ranking and connected components.
— List ranking runs 40 times faster
- Connected components runs 6 times faster

— on 220MHz Cray MTA-2 processors compared with a commodity
400MHz Sun SMP.

- [Bader, Cong, Feo; ICPP 2005]

 Graph theory applications

- Parallel breadth-first search; approximate clique extraction; DARPA
SSCA2 [Bader, Madduri, Feo, in progress]

— st-connectivity [Bader, Madduri; ICPP 2006]
- Betweenness Centrality [Bader, Madduri; ICPP 2006]

- Advanced Shortest Paths [Croback, Berry, Madduri, Bader; MTAAP
2007]

Georgia GCaollege off
David A. Bader, Petascale Computing for Large-Scale Graph Problems Tech ©@‘mm@ 23



Case Study 1: Breadth-First Search (B

e Sequential BFS: O(m+n)

usmg d FIFO queue BFS on Scale-free (SF-RMAT) graphs
e Recent a|gorith ms and (200 million vertices, 1 billion edges)
implementations for . w0
handling large-scale graphs: %= Time
— graph partitioning [Yoo et. al. 74 Speed® | 45
005] R
- external memory [Meyer et. al. S 6 L 30
2006] S =)
* Ourdesignis afine-grained ¢ 51 s §
algorithm, suited for E ?
multithreaded architectures 5 - o 2
- All vertices at a given levelin 3 &
the graph can be processed 5 °] [
simultaneously, instead of
just picking the vertex at the 27 10
head of the queue
- The adjacencies of each ' ]} = - o °
vertex can be inspected in
pa rallel No. of processors

Georgia Caollege off
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Large-Scale Graph Results:

Breadth-First Search
Problem Graph Instance Result Comments
Multithreaded Random graph 2.3 s (p=40) | Works well for
(OUR RESULT) n=228 vertices 73.9s (p=1) |sparse real-world
m=230edges Cray MTA-2 graphs
External Memory | Random graph 8.9 HOURS State-of-the-art
[Ajwani et al., 2006] | n=228 vertices (MM_BFS_R) | external memory
m=230 edges BFS
Multithreaded Random graph 4.53s Largest arbitrary
(OUR RESULT) Scale-free graph 2.2s BFS known results
n=400 M vertices (p=40)
m=2 B edges Cray MTA-2
Distributed Random graphs 4.7 sec on Works only for Erdos-
Memory n=3B vertices p=32K Renyi random
[Yoo et al., 2005] | m=32B edges IBM BG/L graphs.

David A. Bader, Petascale Computing for Large-Scale Graph Problems

Georgia College o

Tech

Cenmpurdng 25




Case Study 2: Social Network Anal

i‘;’;

ysis

e Centrality metrics: Quantitative measures to capture
the importance of a node/vertex/actor in a graph

- Degree, Closeness, Stress, Betweenness

e |dentifying central nodes in large complex networks
IS the key metric in a number of applications:

Biological networks, protein-protein interactions
Sexual networks and AIDS

|dentifying key actors in terrorist networks
Organizational behavior

Supply chain management

Transportation networks

Georgia Caollege off
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Biological Complex Networks

* Protein-interaction networks
(PINs), signal transduction
networks, biological pathways, = & s,
food-webs B Tl

e PIN analysis: Novel protein R e

function prediction,
identification of critical nodes

* High-throughput experimental
techniques = lot of biological
data

e Protein-interaction datasets - )
are avallable for yeaSt (hlgh_ Giot L, Bader JS, ..., Rothberg JM,

A protein interaction map of Drosophila melanogaster

CO nfl d e n Ce) y h U m a n y fly Science 302: 1727-1736, 2003.

[ nsmaascsn oo
B

Georgia College off
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Our Contributions

* Graph-theoretic analysis of the Human protein
interaction network, comprising nearly 18,000
proteins and 44,000 interactions.

- [Bader,Madduri; HICOMB 2007]

e Parallel algorithms for analysis of large-scale
Interaction networks
- [Bader, Madduri; ICPP 2000]

e Comparison of the yeast and human protein
Interaction networks, over time.

Georgia College of
David A. Bader, Petascale Computing for Large-Scale Graph Problems TeCh ©@‘mm@ 28



Human PIN: Degree Distribution

HPIN dataset
Degree distribution (18669 proteins, 43568 interactions)

10000

1000 - ®.e

Frequency
=
o
o

=
o
1

0.1

T T T
0.1 1 10 100 1000
Degree

David A. Bader, Petascale Computing for Large-Scale Graph Problems

The degree distribution is
similar to the yeast protein
interaction network
(unbalanced, few high-degree
proteins)

Power-law graph models can
mimic the degree distribution
of PINs

Protein with the highest
degree: Solute carrier family
2 member 4, Gene Symbol
SLC2A4, HPRD ID 00688,
biological function: transport

Georgia College of
Tech  Compuiding 29



Betweenness Centrality (BC)

 Key metric in social network analysis
[Freeman 77, Goh '02, Newman ‘03, Brandes '03]

sc(v)- 3 %)

s#V=teV Gst

® 04 . Number of shortest paths between vertices s and t

e 04(V): Number of shortest paths between vertices s and t
passing through v

e Exact BC is compute-intensive

Georgia Caollege off
David A. Bader, Petascale Computing for Large-Scale Graph Problems TeCh @@Gﬂﬁg@@ﬂﬁﬂ@@
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BC Algorithms

e Brandes [2003] proposed a faster sequential
algorithm for BC on sparse graphs

- O(mn+n?logn) time and O(n) space for weighted
graphs

- O(mn) time for unweighted graphs

» We designed and implemented the first
parallel algorithm:

- [Bader, Madduri; ICPP 2006]

Georgia Caollege off
Tech Compuling
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BC Computation: Parallel Performance

—@— Execution time

200 —¥— Relative Speedup [ 20
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5 150 - - 15 %
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Number of threads

Georgia Caollege off
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BC Analysis:
Protein-protein interactions

 We recently computed betweenness centrality scores for the
human genome?! protein interaction network
- [Bader, Madduri; HICOMB 2007]

Human Genome Protein Interactions
Degree vs. Betweenness Centrality

le-1

Low degree
vertices can have
high centrality
scores

le-2 4

le-3 4

le-4

le-5 4

Normalized Betweenness Centrality

le-6 4

le-7

T T
1 10 100

Degree

! Lehner, Fraser. A first draft human protein interaction map,
http://genomebiology.com/2004/5/9/R63

Georgia Caollege off
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BC Analysis:
Protein-protein interactions

43 interactions

Protein Ensembl ID
ENSG00000145332.2
Kelch-like protein 8

Human Genome core protein interactions
Degree vs. Betweenness Centrality

le+0

le-1 A

le-2

le-3

le-4 A

le-5

Betweenness Centrality

le-6 -

le-7 T
1 10 100

Georgia Codllege off
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BC Implementation Details

* We have designhed and implemented parallel
betweenness centrality for two shared memory
platforms:

- Symmetrical multiprocessors (SMPs)
 Modest number of processors

* Coarse-grained implementation, BFS/SSSP computations are
done concurrently

* Implemented on IBM p570

- multithreaded architectures
 Thousands of hardware threads
e |[ndividual BFS/SSSP computation is parallelized
* Implemented on Cray MTA-2

Georgia Caollege off
David A. Bader, Petascale Computing for Large-Scale Graph Problems TeCh ©@mﬂ@@ﬂﬁﬂm@ 35



IBM p5 570

 16-way Powerb symmetric multiprocessor

e 1.9 GHz processor

e 256 GB physical memory

e 32KB L1D, 1.9MB L2,
32MB L3

e 8-way superscalar

e SMT on each core

e Supports a C and POSIX threads
parallel implementation

Georgia Caollege off
le Computing for Large-Scale Graph Problems -‘bc:h Em@
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BC for IMDB movie actor netwol

Real-world instance: an undirected graph of 392,400 vertices (movie actors)
and 31,788,592 edges. An edge corresponds to a link between two actors, if
they have acted together in a movie. The dataset includes actor listings from
127,823 movies.

Betweenness Centrality computation for the ND-actor graph
(392,400 vertices and 31,788,592 edges)

ND-actor : IMDB movie-actor network
(392,400 vertices and 31,788,592 edges)

No. of processors

Degree Distribution: Scale-free
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BC for web graph

Betweenness Centrality computation for the ND-web graph
(325,729 vertices and 1,497,135 edges)
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Conclusions

e “High-Performance Computing” needs to move from
FP-centric to data-centric computing
- Impact to emerging areas such as life sciences and

informatics

e Several architectural features reduce the
programmer’s burden and enable high-performance
large-scale applications with irregular data
structures

 How will we program multicore processors,
especially for these applications?

e Will Microsoft and Intel reach this before the
traditional HPC community? ©
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